Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1268275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941901

RESUMO

MYC, a key member of the Myc-proto-oncogene family, is a universal transcription amplifier that regulates almost every physiological process in a cell including cell cycle, proliferation, metabolism, differentiation, and apoptosis. MYC interacts with several cofactors, chromatin modifiers, and regulators to direct gene expression. MYC levels are tightly regulated, and deregulation of MYC has been associated with numerous diseases including cancer. Understanding the comprehensive biology of MYC under physiological conditions is an utmost necessity to demark biological functions of MYC from its pathological functions. Here we review the recent advances in biological mechanisms, functions, and regulation of MYC. We also emphasize the role of MYC as a global transcription amplifier.

2.
Mol Cell ; 82(1): 140-158.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34890565

RESUMO

High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Neoplasias/enzimologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , DNA Super-Helicoidal/biossíntese , DNA Super-Helicoidal/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Complexos Multienzimáticos , Neoplasias/genética , Neoplasias/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Ratos
3.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34767771

RESUMO

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Neoplasias Colorretais/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Fase G1 , Mitose , RNA Polimerase II/metabolismo , Transcrição Gênica , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/genética , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Inibidores de MTOR/farmacologia , Mitose/efeitos dos fármacos , RNA Polimerase II/genética
4.
Methods Mol Biol ; 2035: 369-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31444763

RESUMO

While DNA inside the cells is predominantly canonical right-handed double helix, guanine-rich DNAs have potential to fold into four-stranded structures that contain stacks of G-quartets (G4 DNA quadruplex). Genome sequencing has revealed G4 sequences tend to localize at the gene control regions, especially in the promoters of oncogenes. A growing body of evidence indicates that G4 DNA quadruplexes might have important regulatory roles in genome function, highlighting the need for techniques to detect genome-wide folding of DNA into this structure. Potassium permanganate in vivo treatment of cells results in oxidizing of nucleotides in single-stranded DNA regions that accompany G4 DNA quadruplexes formation, providing an excellent probe for the conformational state of DNA inside the living cells. Here, we describe a permanganate-based methodology to detect G4 DNA quadruplex, genome-wide. This methodology combined with high-throughput sequencing provides a snapshot of the DNA conformation over the whole genome in vivo.


Assuntos
Quadruplex G , Cromatina/química , Genômica , Compostos de Manganês/química , Óxidos/química
5.
Methods Mol Biol ; 1672: 155-166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043624

RESUMO

Here, we present two approaches to map DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) in the genome of human cells. We named these methods respectively DSB-Seq and SSB-Seq. We tested the DSB and SSB-Seq in HCT1116, human colon cancer cells, and validated the results using the topoisomerase 2 (Top2)-poisoning agent etoposide (ETO). These methods are powerful tools for the direct detection of the physiological and pathological "breakome" of the DNA in human cells.


Assuntos
Mapeamento Cromossômico , Quebras de DNA de Cadeia Dupla , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA/química , DNA/genética , DNA/isolamento & purificação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , DNA de Cadeia Simples , Etoposídeo/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA
6.
Chromosome Res ; 24(2): 175-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26685864

RESUMO

The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , Reagentes de Ligações Cruzadas/química , DNA Topoisomerases Tipo I/química , DNA/química , Formaldeído/química , Proteínas de Fluorescência Verde/química , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Células HCT116 , Humanos , Fatores de Tempo
7.
Int J Mol Sci ; 15(7): 13111-22, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25056547

RESUMO

Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2)-poisoning agent etoposide (ETO). Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Mapeamento Cromossômico , Células HCT116 , Humanos , Análise de Sequência de DNA
8.
Cell ; 153(5): 988-99, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706737

RESUMO

Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Ativação Linfocitária , Linfócitos/metabolismo , Regiões Promotoras Genéticas , Animais , Linfócitos B/imunologia , Linhagem Celular Tumoral , DNA de Cadeia Simples/metabolismo , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
9.
Nat Struct Mol Biol ; 20(3): 396-403, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23416947

RESUMO

Transcription has the capacity to mechanically modify DNA topology, DNA structure and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitt's lymphoma cells by using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kilobases upstream of the start sites of active genes. Low- and high-output promoters handled this torsional stress differently, as shown by using inhibitors of transcription and topoisomerases and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high-output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.


Assuntos
DNA Super-Helicoidal/química , Regulação da Expressão Gênica , Transcrição Gênica , Linfoma de Burkitt/genética , Imunoprecipitação da Cromatina , Reagentes de Ligações Cruzadas , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Ficusina/química , Humanos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Células Tumorais Cultivadas
10.
Proc Natl Acad Sci U S A ; 105(47): 18296-301, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19015535

RESUMO

The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence selectivity. EMSA and missing contact point analysis revealed that FBP contacts 4 separate patches spanning a large segment of FUSE. A SELEX procedure using paired KH-domains defined the preferred subsequences for each KH domain. Unexpectedly, there was also a strong selection for the noncontacted residues between these subsequences, showing that the contact points must be optimally presented in a backbone that minimizes secondary structure. Strategic mutation of contact points defined in this study disabled FUSE activity in vivo. Because the biological specificity of FBP is tuned at several layers: (i) accessibility of the site; (ii) supercoil-driven melting; (iii) presentation of unhindered bases for recognition; and (iv) modular interaction of KH-domains with cognate bases, the FBP-FIR system and sequence-specific, single-strand DNA binding proteins in general are likely to prove versatile tools for adjusting gene expression.


Assuntos
DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Consenso , DNA Helicases/genética , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Genes myc , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Proteínas de Ligação a RNA , Técnica de Seleção de Aptâmeros
11.
EMBO J ; 25(10): 2119-30, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16628215

RESUMO

FarUpStream Element (FUSE) Binding Protein (FBP) binds the human c-myc FUSE in vitro only in single-stranded or supercoiled DNA. Because transcriptionally generated torsion melts FUSE in vitro even in linear DNA, and FBP/FBP Interacting Repressor (FIR) regulates transcription through TFIIH, these components have been speculated to be the mechanosensor (FUSE) and effectors (FBP/FIR) of a real-time mechanism controlling c-myc transcription. To ascertain whether the FUSE/FBP/FIR system operates according to this hypothesis in vivo, the flux of activators, repressors and chromatin remodeling complexes on the c-myc promoter was monitored throughout the serum-induced pulse of transcription. After transcription was switched on by conventional factors and chromatin regulators, FBP and FIR were recruited and established a dynamically remodeled loop with TFIIH at the P2 promoter. In XPB cells carrying mutant TFIIH, loop formation failed and the serum response was abnormal; RNAi depletion of FIR similarly disabled c-myc regulation. Engineering FUSE into episomal vectors predictably re-programmed metallothionein-promoter-driven reporter expression. The in vitro recruitment of FBP and FIR to dynamically stressed c-myc DNA paralleled the in vivo process.


Assuntos
Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIIH/metabolismo , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Genes Reporter , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Transativadores/genética , Fator de Transcrição TFIIH/genética , Transcrição Gênica
12.
Nat Struct Mol Biol ; 11(11): 1092-100, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502847

RESUMO

The torsional stress caused by counter-rotation of the transcription machinery and template generates supercoils in a closed topological domain, but has been presumed to be too short-lived to be significant in an open domain. This report shows that transcribing RNA polymerases dynamically sustain sufficient torsion to perturb DNA structure even on linear templates. Assays to capture and measure transcriptionally generated torque and to trap short-lived perturbations in DNA structure and conformation showed that the transient forces upstream of active promoters are large enough to drive the supercoil-sensitive far upstream element (FUSE) of the human c-myc into single-stranded DNA. An alternative non-B conformation of FUSE found in stably supercoiled DNA is not accessible dynamically. These results demonstrate that dynamic disturbance of DNA structure provides a real-time measure of ongoing genetic activity.


Assuntos
DNA/metabolismo , Transcrição Gênica , Sequência de Bases , Cromatina/química , DNA/química , DNA Super-Helicoidal/química , Eletroforese em Gel Bidimensional , Escherichia coli/metabolismo , Genes myc , Guanosina Trifosfato/metabolismo , Magnésio/química , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , RNA/química , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA