Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytokine X ; 1(1)2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31289792

RESUMO

Macrophage migration inhibitory factor (MIF), a proinflammatory mediator, is recognized as a player in inflammatory and neuropathic pain. Cyclophosphamide (CYP) results in bladder inflammation and pain and it's a frequently used animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). Because pretreatment with a MIF inhibitor (ISO-1) prevented both CYP-induced bladder pain and inflammation we used genetic MIF knockout (KO) mice to further investigate MIF's role in CYP-induced bladder pain and inflammation. Abdominal mechanical threshold measured bladder pain induced by CYP in wild type (WT) and MIF KO mice at several time points (0-48 hours). End-point (48 hours) changes in micturition parameters and histological signs of bladder inflammation were also evaluated. Abdominal mechanical hypersensitivity developed within 4 hours after CYP injection (and lasted for the entire observation period: 48 hours) in WT mice. MIF KO mice, on the other hand, did not develop abdominal mechanical hypersensitivity suggesting that MIF is a pivotal molecule in mediating CYP-induced bladder pain. Both WT and MIF KO mice treated with CYP showed histological signs of marked bladder inflammation and showed a significant decrease in micturition volume and increase in frequency. Since both changes were blocked in MIF KO mice by pretreatment with a MIF inhibitor (ISO-1) it is likely these are non-specific effects of ISO-1. MIF mediates CYP-induced bladder pain but not CYP-induced bladder inflammation. The locus of effect (bladder) or central (spinal) for MIF mediation of bladder pain remains to be determined.

2.
Urology ; 116: 55-62, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29580781

RESUMO

OBJECTIVE: To investigate whether urinary levels of macrophage migration inhibitory factor (MIF) are elevated in interstitial cystitis/bladder pain syndrome (IC/BPS) patients with Hunner lesions and also whether urine MIF is elevated in other forms of inflammatory cystitis. METHODS: Urine samples were assayed for MIF by enzyme-linked immunosorbent assay. Urine samples from 3 female groups were examined: IC/BPS patients without (N = 55) and with Hunner lesions (N = 43), and non-IC/BPS patients (N = 100; control group; no history of IC/BPS; cancer or recent bacterial cystitis). Urine samples from 3 male groups were examined: patients with bacterial cystitis (N = 50), radiation cystitis (N = 18) and noncystitis patients (N = 119; control group; negative for bacterial cystitis). RESULTS: Urine MIF (mean MIF pg/mL ± standard error of the mean) was increased in female IC/BPS patients with Hunner lesions (2159 ± 435.3) compared with IC/BPS patients without Hunner lesions (460 ± 114.5) or non-IC/BPS patients (414 ± 47.6). Receiver operating curve analyses showed that urine MIF levels discriminated between the 2 IC groups (area under the curve = 72%; confidence interval 61%-82%). Male patients with bacterial and radiation cystitis had elevated urine MIF levels (2839 ± 757.1 and 4404 ± 1548.1, respectively) compared with noncystitis patients (681 ± 75.2). CONCLUSION: Urine MIF is elevated in IC/BPS patients with Hunner lesions and also in patients with other bladder inflammatory and painful conditions. MIF may also serve as a noninvasive biomarker to select IC/BPS patients more accurately for endoscopic evaluation and possible anti-inflammatory treatment.


Assuntos
Cistite Intersticial/urina , Oxirredutases Intramoleculares/urina , Fatores Inibidores da Migração de Macrófagos/urina , Área Sob a Curva , Biomarcadores/urina , Cistite Intersticial/sangue , Cistite Intersticial/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Inflamação , Masculino , Dor/etiologia , Curva ROC , Lesões por Radiação/urina , Úlcera/complicações , Úlcera/urina , Doenças da Bexiga Urinária/urina , Infecções Urinárias/urina
3.
BMC Physiol ; 17(1): 6, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545586

RESUMO

BACKGROUND: Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. RESULTS: Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 µg/150 µl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 µg/150 µl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 µg/150 µl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 µg/150 µl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. CONCLUSIONS: The disulfide form of HMGB1 mediates bladder pain directly (not secondary to inflammation or injury) through activation of TLR4 receptors in the bladder. Thus, TLR4 receptors are a specific local target for bladder pain.


Assuntos
Dor Abdominal/metabolismo , Proteína HMGB1/metabolismo , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/metabolismo , Dor Abdominal/induzido quimicamente , Dor Abdominal/etiologia , Animais , Dissulfetos/administração & dosagem , Dissulfetos/metabolismo , Feminino , Proteína HMGB1/administração & dosagem , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Bexiga Urinária/patologia , Micção
4.
PLoS One ; 11(3): e0152055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010488

RESUMO

Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 µM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; i.p.) or vehicle, received intravesical PAR4-AP or a control peptide (100 µM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; i.p.) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions.


Assuntos
Proteína HMGB1/metabolismo , Dor Pélvica/metabolismo , Receptores de Trombina/metabolismo , Bexiga Urinária/patologia , Animais , Linhagem Celular , Feminino , Proteína HMGB1/antagonistas & inibidores , Humanos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Dor Pélvica/patologia , Dor Pélvica/prevenção & controle , Bexiga Urinária/metabolismo
5.
PLoS One ; 10(5): e0127628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020638

RESUMO

INTRODUCTION: Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is constitutively expressed in urothelial cells that also express protease-activated receptors (PAR). Urothelial PAR1 receptors were shown to mediate bladder inflammation. We showed that PAR1 and PAR4 activator, thrombin, also mediates urothelial MIF release. We hypothesized that stimulation of urothelial PAR1 or PAR4 receptors elicits release of urothelial MIF that acts on MIF receptors in the urothelium to mediate bladder inflammation and pain. Thus, we examined the effect of activation of specific bladder PAR receptors on MIF release, bladder pain, micturition and histological changes. METHODS: MIF release was measured in vitro after exposing immortalized human urothelial cells (UROtsa) to PAR1 or PAR4 activating peptides (AP). Female C57BL/6 mice received intravesical PAR1- or PAR4-AP for one hour to determine: 1) bladder MIF release in vivo within one hour; 2) abdominal hypersensitivity (allodynia) to von Frey filament stimulation 24 hours after treatment; 3) micturition parameters 24 hours after treatment; 4) histological changes in the bladder as a result of treatment; 5) changes in expression of bladder MIF and MIF receptors using real-time RT-PCR; 6) changes in urothelial MIF and MIF receptor, CXCR4, protein levels using quantitative immunofluorescence; 7) effect of MIF or CXCR4 antagonism. RESULTS: PAR1- or PAR4-AP triggered MIF release from both human urothelial cells in vitro and mouse urothelium in vivo. Twenty-four hours after intravesical PAR1- or PAR4-AP, we observed abdominal hypersensitivity in mice without changes in micturition or bladder histology. PAR4-AP was more effective and also increased expression of bladder MIF and urothelium MIF receptor, CXCR4. Bladder CXCR4 localized to the urothelium. Antagonizing MIF with ISO-1 eliminated PAR4- and reduced PAR1-induced hypersensitivity, while antagonizing CXCR4 with AMD3100 only partially prevented PAR4-induced hypersensitivity. CONCLUSIONS: Bladder PAR activation elicits urothelial MIF release and urothelial MIF receptor signaling at least partly through CXCR4 to result in abdominal hypersensitivity without overt bladder inflammation. PAR-induced bladder pain may represent an interesting pre-clinical model of Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS) where pain occurs without apparent bladder injury or pathology. MIF is potentially a novel therapeutic target for bladder pain in IC/PBS patients.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Dor/metabolismo , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Bexiga Urinária/metabolismo , Animais , Linhagem Celular Transformada , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Dor/patologia , Receptores CXCR4/metabolismo , Receptores Imunológicos/metabolismo , Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA