Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ESC Heart Fail ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243187

RESUMO

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of death worldwide; thus, therapeutic improvements are needed. In vivo preclinical models are essential to identify molecular drug targets for future therapies. Transverse aortic constriction (TAC) is a well-established model of HFrEF; however, highly experienced personnel are needed for the surgery, and several weeks of follow-up are necessary to develop HFrEF. To this end, we aimed (i) to develop an easy-to-perform mouse model of HFrEF by treating Balb/c mice with angiotensin-II (Ang-II) for 2 weeks by minipump and (ii) to compare its cardiac phenotype and transcriptome to the well-established TAC model of HFrEF in C57BL/6J mice. METHODS: Mortality and gross pathological data, cardiac structural and functional characteristics assessed by echocardiography and immunohistochemistry and differential gene expression obtained by RNA-sequencing and gene-ontology analyses were used to characterize and compare the two models. To achieve statistical comparability between the two models, changes in treatment groups related to the corresponding control were compared (ΔTAC vs. ΔAng-II). RESULTS: Compared with the well-established TAC model, chronic Ang-II treatment of Balb/c mice shares similarities in cardiac systolic functional decline (left ventricular ejection fraction: -57.25 ± 7.17% vs. -43.68 ± 5.31% in ΔTAC vs. ΔAng-II; P = 0.1794) but shows a lesser degree of left ventricular dilation (left ventricular end-systolic volume: 190.81 ± 44.13 vs. 57.37 ± 10.18 mL in ΔTAC vs. ΔAng-II; P = 0.0252) and hypertrophy (cell surface area: 58.44 ± 6.1 vs. 10.24 ± 2.87 µm2 in ΔTAC vs. ΔAng-II; P < 0.001); nevertheless, transcriptomic changes in the two HFrEF models show strong correlation (Spearman's r = 0.727; P < 0.001). In return, Ang-II treatment in Balb/c mice needs significantly less procedural time [38 min, interquartile range (IQR): 31-46 min in TAC vs. 6 min, IQR: 6-7 min in Ang-II; P < 0.001] and surgical expertise, is less of an object for peri-procedural mortality (15.8% in TAC vs. 0% in Ang-II; P = 0.105) and needs significantly shorter follow-up for developing HFrEF. CONCLUSIONS: Here, we demonstrate for the first time that chronic Ang-II treatment of Balb/c mice is also a relevant, reliable but significantly easier-to-perform preclinical model to identify novel pathomechanisms and targets in future HFrEF research.

2.
Open Res Eur ; 3: 88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37981907

RESUMO

Background: Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods: Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results: Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions: Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.


The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

3.
Toxicol Appl Pharmacol ; 423: 115579, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015281

RESUMO

Cardiomyopathy resistant to treatment is the most serious adverse effect of doxorubicin (dox). The mechanisms of dox-induced cardiomyopathy (DCM) have been extensively studied in dilated forms of DCM. However, efficient treatment did not emerge. The aim of the present work was to revisit the experimental model of DCM in rats, to define phenotype/s and associate them to the changes in cardiac transcriptome. Male Wistar rats equipped with radiotelemetry device, were randomized in DOX group (5 mg/0,5 mL/kg, IV dox; n = 18) and CONT group (0,5 mL/kg IV saline; n = 6). Echocardiography, autonomic spectral markers and baroreceptor reflex evaluation was performed prior to, and after treatment. Blood samples were collected at the end of experimentation. Cardiac, renal and hepatic tissues were analysed post-mortem by histology. Changes in expression of key cardiac genes affected by dox were assessed by RT-qPCR. Phenotypes were identified by clustering non-redundant features using four different algorithms averaged by evidence accumulation cluster technique. The results emphasize the existence of two major phenotypes of DCM with comparably high mortality rates: phenotype 1 characterized by, left ventricular (LV) dilatation, thinning of LV posterior wall, reduced LV ejection fraction (LVEF) and fractional shortening (LVFS), decreased HR variability (HRV), decreased baroreceptor effectiveness index (BEI) and increased NT-proBNP; and phenotype 2 with LV hypertrophy - increased LV mass, preserved LVEF, LVFS, no changes in HRV and BEI and moderate NT-proBNP increase. Both phenotypes exhibited a genetic shift to a new-born program.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/classificação , Cardiomiopatias/genética , Mapeamento Cromossômico/métodos , Doxorrubicina/toxicidade , Animais , Cardiomiopatias/induzido quimicamente , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
4.
J Cell Mol Med ; 25(12): 5381-5390, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949765

RESUMO

Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti-apoptotic, pro-survival and pro-angiogenic activities of MSCs isolated from the adipose tissue (AT-MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT-MSCs overexpressing TERT and MYOCD (T/M AT-MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT-MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT-MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre-treatment with CM (15 ± 2, P = .02) or with the EV-enriched fraction (10 ± 1%, P = .02) obtained from mock-transduced AT-MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV-enriched fraction (2 ± 1%, P = .01) obtained from T/M AT-MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase-3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α-actinin and cardiac actin. The T/M AT-MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/terapia , Coração/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Proteínas Nucleares/metabolismo , Traumatismo por Reperfusão/complicações , Telomerase/metabolismo , Transativadores/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Telomerase/genética , Transativadores/genética
5.
Genome Biol ; 20(1): 240, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727117

RESUMO

BACKGROUND: Homologous recombination (HR) repair deficiency arising from defects in BRCA1 or BRCA2 is associated with characteristic patterns of somatic mutations. In this genetic study, we ask whether inactivating mutations in further genes of the HR pathway or the DNA damage checkpoint also give rise to somatic mutation patterns that can be used for treatment prediction. RESULTS: Using whole genome sequencing of an isogenic knockout cell line panel, we find a universal HR deficiency-specific base substitution signature that is similar to COSMIC signature 3. In contrast, we detect different deletion phenotypes corresponding to specific HR mutants. The inactivation of BRCA2 or PALB2 leads to larger deletions, typically with microhomology, when compared to the disruption of BRCA1, RAD51 paralogs, or RAD54. Comparison with the deletion spectrum of Cas9 cut sites suggests that most spontaneously arising genomic deletions are not the consequence of double-strand breaks. Surprisingly, the inactivation of checkpoint kinases ATM and CHK2 has no mutagenic consequences. Analysis of tumor exomes with biallelic inactivating mutations in the investigated genes confirms the validity of the cell line models. We present a comprehensive analysis of sensitivity of the investigated mutants to 13 therapeutic agents for the purpose of correlating genomic mutagenic phenotypes with drug sensitivity. CONCLUSION: Our results suggest that no single genomic mutational class shows perfect correlation with sensitivity to common treatments, but the contribution of COSMIC signature 3 to base substitutions, or a combined measure of different features, may be reasonably good at predicting platinum and PARP inhibitor sensitivity.


Assuntos
Genes cdc , Mutagênese , Variantes Farmacogenômicos , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação/genética , Animais , Linhagem Celular , Galinhas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA