Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
FEBS J ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431775

RESUMO

Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV 1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.

2.
Sci Rep ; 13(1): 22451, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105266

RESUMO

Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.


Assuntos
Ácido Clodrônico , Colite , Camundongos , Animais , Ácido Clodrônico/farmacologia , Colite/induzido quimicamente , Inflamação , Macrófagos , Colo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958648

RESUMO

The enteric nervous system (ENS) is principally derived from vagal neural crest cells that migrate caudally along the entire length of the gastrointestinal tract, giving rise to neurons and glial cells in two ganglionated plexuses. Incomplete migration of enteric neural crest-derived cells (ENCDC) leads to Hirschsprung disease, a congenital disorder characterized by the absence of enteric ganglia along variable lengths of the colorectum. Our previous work strongly supported the essential role of the avian ceca, present at the junction of the midgut and hindgut, in hindgut ENS development, since ablation of the cecal buds led to incomplete ENCDC colonization of the hindgut. In situ hybridization shows bone morphogenetic protein-4 (BMP4) is highly expressed in the cecal mesenchyme, leading us to hypothesize that cecal BMP4 is required for hindgut ENS development. To test this, we modulated BMP4 activity using embryonic intestinal organ culture techniques and retroviral infection. We show that overexpression or inhibition of BMP4 in the ceca disrupts hindgut ENS development, with GDNF playing an important regulatory role. Our results suggest that these two important signaling pathways are required for normal ENCDC migration and enteric ganglion formation in the developing hindgut ENS.


Assuntos
Neoplasias Colorretais , Sistema Nervoso Entérico , Humanos , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Sistema Nervoso Entérico/metabolismo , Movimento Celular/fisiologia , Neoplasias Colorretais/metabolismo , Crista Neural/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo
4.
J Pediatr Surg ; 58(10): 2020-2026, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37202294

RESUMO

BACKGROUND: Staged laparoscopic traction orchiopexy (SLTO) is a novel technique for the intra-abdominal testis (IAT) based on elongation of the testicular vessels without separating them. This multicenter study evaluated the medium-term results of this technique. METHODS: Data of SLTO performed in three pediatric surgical centers between 2013 and 2020 were analyzed retrospectively. In 2021, physical and Doppler ultrasound examinations were performed to determine the position and viability of testes. Success was defined as an intra-scrotal testicle without atrophy. RESULTS: SLTO was performed on 48 cases (55 testes, 7 bilateral). Mean age at first stage was 2.9 (0.8-12.6) years. High intra-abdominal testes were found in 16.4% and in 60% morphological abnormalities were observed. To fix the testes to the abdominal wall monofilament suture was used in 67.3%, braided in 29.1%. Mean time between the two stages was 16.4 weeks; three testes required redo traction. Perioperative complications occurred in 21 patients (38.2%) including insufficient fixation (11), testicular atrophy (4), wound complications (4), adhesion of the spermatic cords (1) and hydrocele (1). In case of insufficient fixation monofilament sutures were used in 90.9%. In 2021 38 patients (43 testes) had physical and 36 patients (41 testes) had ultrasound examinations. Mean follow-up was 2.7 (0.34-7.9) years. Altogether five atrophies were identified, and three testicular ascents (7.0%) occurred. The overall success rate was 82.2%. CONCLUSIONS: SLTO may be a feasible alternative to conventional treatments of IATs. Additionally, braided suture seems to be a better option to fix the testicle to the abdominal wall. LEVEL OF EVIDENCE: LEVEL IV.


Assuntos
Criptorquidismo , Laparoscopia , Criança , Masculino , Humanos , Lactente , Pré-Escolar , Orquidopexia/métodos , Testículo/cirurgia , Criptorquidismo/cirurgia , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Tração , Estudos Retrospectivos , Laparoscopia/métodos , Atrofia , Resultado do Tratamento
5.
Oncoimmunology ; 12(1): 2204746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197440

RESUMO

Due to the high variance in response rates concerning anti-PD1 immunotherapy (IT), there is an unmet need to discover innovative biomarkers to predict immune checkpoint inhibitor (ICI)-efficacy. Our study included 62 Caucasian advanced-stage non-small cell lung cancer (NSCLC) patients treated with anti-PD1 ICI. Gut bacterial signatures were evaluated by metagenomic sequencing and correlated with progression-free survival (PFS), PD-L1 expression and other clinicopathological parameters. We confirmed the predictive role of PFS-related key bacteria with multivariate statistical models (Lasso- and Cox-regression) and validated on an additional patient cohort (n = 60). We find that alpha-diversity showed no significant difference in any comparison. However, there was a significant difference in beta-diversity between patients with long- (>6 months) vs. short (≤6 months) PFS and between chemotherapy (CHT)-treated vs. CHT-naive cases. Short PFS was associated with increased abundance of Firmicutes (F) and Actinobacteria phyla, whereas elevated abundance of Euryarchaeota was specific for low PD-L1 expression. F/Bacteroides (F/B) ratio was significantly increased in patients with short PFS. Multivariate analysis revealed an association between Alistipes shahii, Alistipes finegoldii, Barnesiella visceriola, and long PFS. In contrast, Streptococcus salivarius, Streptococcus vestibularis, and Bifidobacterium breve were associated with short PFS. Using Random Forest machine learning approach, we find that taxonomic profiles performed superiorly in predicting PFS (AUC = 0.74), while metabolic pathways including Amino Acid Synthesis and Fermentation were better predictors of PD-L1 expression (AUC = 0.87). We conclude that specific metagenomic features of the gut microbiome, including bacterial taxonomy and metabolic pathways might be suggestive of ICI efficacy and PD-L1 expression in NSCLC patients.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão , Antígeno B7-H1 , Antineoplásicos Imunológicos/efeitos adversos , Imunoterapia , Redes e Vias Metabólicas
6.
Front Neuroinform ; 17: 1005936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970656

RESUMO

The rapid effects of estradiol on membrane receptors are in the focus of the estradiol research field, however, the molecular mechanisms of these non-classical estradiol actions are poorly understood. Since the lateral diffusion of membrane receptors is an important indicator of their function, a deeper understanding of the underlying mechanisms of non-classical estradiol actions can be achieved by investigating receptor dynamics. Diffusion coefficient is a crucial and widely used parameter to characterize the movement of receptors in the cell membrane. The aim of this study was to investigate the differences between maximum likelihood-based estimation (MLE) and mean square displacement (MSD) based calculation of diffusion coefficients. In this work we applied both MSD and MLE to calculate diffusion coefficients. Single particle trajectories were extracted from simulation as well as from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the obtained diffusion coefficients revealed the superiority of MLE over the generally used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients because as it has a better performance, especially for large localization errors or slow receptor movements.

7.
Sci Rep ; 13(1): 356, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611037

RESUMO

Interleukin-1ß (IL-1ß) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1ß contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1ß is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1ß targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1ß Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1ß treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1ß inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1ß inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1ß. IL-1ß inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1ß inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Interleucina-1beta/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL
8.
Br J Pharmacol ; 180(6): 740-761, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356191

RESUMO

BACKGROUND AND PURPOSE: Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH: C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS: Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS: PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Cardiotoxicidade/etiologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Interleucina-17 , Camundongos Endogâmicos C57BL , Inflamação/complicações
9.
Front Pediatr ; 10: 965541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061373

RESUMO

Clear cell sarcoma of the kidney (CCSK) is an uncommon renal neoplasm of childhood. Progression of intracaval or cavoatrial thrombosis is extremely rare and mostly asymptomatic, treated with neoadjuvant therapy followed by surgery. However, in an unstable patient, acute radical surgical intervention is the treatment of choice. We present a 2-year-old girl diagnosed as having a large left kidney tumor and acute cardiac decompensation via cavoatrial thrombotic progression. Urgent radical nephrectomy and removal of tumor thrombus were performed using atriotomy and inferior vena cava (IVC) endarterectomy under cardiopulmonary bypass. Histopathology revealed CCSK. The patient is tumor-free at 9-year follow-up.

10.
Foods ; 11(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741908

RESUMO

Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin-Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids. Some lipase-treated and untreated samples of oils, at 1.25 mg/mL lipid concentration, inhibited the growth of food-contaminating bacteria. The lipid mixtures obtained can be reliable sources of extractable fatty acids with health benefits.

11.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453610

RESUMO

Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.

12.
Poult Sci ; 101(4): 101727, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35172235

RESUMO

The bursal secretory dendritic cell (BSDC) was discovered more than 40 yr ago. It is a highly polarized, granulated cell, locating in the medulla of bursal follicle. The cytoplasmic granules either discharge or fuse together forming large, irregular-shaped, dense bodies. Formation of the dense bodies could be the first sign of BSDC transformation to macrophage-like cell (Mal) which is the result of terminal maturation of BSDC. The BSDC is non-phagocytic, unlike Mal. The discharged substance may be attached to the cell membrane (membrane-bound form) and after detaching, appears as a flocculated substance in the extracellular space of medulla. Movat pentachrome staining shows, that this substance is a glycoprotein (gp), which may be contributed to the microenvironment of the medulla. Medullary lymphocytes are floating in the gp. Precursors of the BSDC locate in the corticomedullary epithelial arches, which operate under the effect of Notch/Serrate signaling. The Notch signaling determines the fate of lymphoblast-like precursor cells and inhibits the appearance of immunoglobulin heavy chain. In the arches, the precursor cells proliferate and entering the medulla differentiate. The dense bodies pack the virus particles, which prevents the granular discharge, resulting in disappearance of extracellular gp, but gp emerges inside the virus containing Mal. In infected birds, the Mal contains either apoptotic cells or virus particles. If vaccination or infectious bursal disease virus (IBDV) infection use up the BSDC precursors, the recovery of follicle is critical.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Infecções por Birnaviridae/veterinária , Bolsa de Fabricius , Galinhas , Células Dendríticas , Glicoproteínas , Macrófagos
13.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205690

RESUMO

The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.

14.
Surg Endosc ; 36(4): 2456-2465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999254

RESUMO

BACKGROUND: Laboratory skills training is an essential step before conducting minimally invasive surgery in clinical practice. Our main aim was to develop an animal model for training in clinically highly challenging laparoscopic duodenal atresia repair that could be useful in establishing a minimum number of repetitions to indicate safe performance of similar interventions on humans. MATERIALS AND METHODS: A rabbit model of laparoscopic duodenum atresia surgery involving a diamond-shaped duodeno-duodenostomy was designed. This approach was tested in two groups of surgeons: in a beginner group without any previous clinical laparoscopic experience (but having undergone previous standardized dry-lab training, n = 8) and in an advanced group comprising pediatric surgery fellows with previous clinical experience of laparoscopy (n = 7). Each participant performed eight interventions. Surgical time, expert assessment using the Global Operative Assessment of Laparoscopic Skills (GOALS) score, anastomosis quality (leakage) and results from participant feedback questionnaires were analyzed. RESULTS: Participants in both groups successfully completed all eight surgeries. The surgical time gradually improved in both groups, but it was typically shorter in the advanced group than in the beginner group. The leakage rate was significantly lower in the advanced group in the first two interventions, and it reached its optimal level after five operations in both groups. The GOALS and participant feedback scores showed gradual increases, evident even after the fifth surgery. CONCLUSIONS: Our data confirm the feasibility of this advanced pediatric laparoscopic model. Surgical time, anastomosis quality, GOALS score and self-assessment parameters adequately quantify technical improvement among the participants. Anastomosis quality reaches its optimal value after the fifth operation even in novice, but uniformly trained surgeons. A minimum number of wet-lab operations can be determined before surgery can be safely conducted in a clinical setting, where the development of further non-technical skills is also required.


Assuntos
Obstrução Duodenal , Atresia Intestinal , Laparoscopia , Animais , Criança , Competência Clínica , Obstrução Duodenal/cirurgia , Humanos , Atresia Intestinal/cirurgia , Laparoscopia/educação , Coelhos
15.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948057

RESUMO

Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.


Assuntos
Doença de Alzheimer/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Presenilina-1/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Adulto , Doença de Alzheimer/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Células PC12 , Ratos , Transdução de Sinais , Imagem Individual de Molécula
16.
Int J Mol Sci ; 22(23)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884773

RESUMO

STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.


Assuntos
Benzofenantridinas/farmacologia , Alcaloides de Berberina/farmacologia , Melanoma/patologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Uveais/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Interleucina-6/metabolismo , Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
17.
Front Cell Dev Biol ; 9: 708715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631701

RESUMO

Gonadal steroid 17ß-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.

18.
Cell Mol Gastroenterol Hepatol ; 12(5): 1617-1641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34246810

RESUMO

BACKGROUND & AIMS: Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS: Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS: We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS: In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.


Assuntos
Colite/etiologia , Colite/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Animais , Biomarcadores , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Matriz Extracelular , Imunofluorescência , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Plexo Mientérico/ultraestrutura , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Infiltração de Neutrófilos
19.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298674

RESUMO

Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.

20.
Pediatr Gastroenterol Hepatol Nutr ; 24(3): 273-278, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34046330

RESUMO

PURPOSE: Percutaneous endoscopic gastrostomy (PEG) is a safe method to feed patients with feeding difficulty. This study aimed to compare the outcomes of conventional PEG and laparoscopic-assisted PEG (L-PEG) placement in high-risk pediatric patients. METHODS: In our tertiary pediatric department, 90 PEG insertions were performed between 2014 and 2019. Children with severe thoracoabdominal deformity (TAD), previous abdominal surgery, ventriculoperitoneal (VP) shunt, and abdominal tumors were considered as high-risk patients. Age, sex, diagnosis, operative time, complications, and mortality were compared among patients who underwent conventional PEG placement (first group) and those who underwent L-PEG placement (second group). RESULTS: We analyzed the outcomes of conventional PEG placement (first group, n=15; patients with severe TAD [n=7], abdominal tumor [n=6], and VP shunts [n=2]) and L-PEG placement (second group, n=10; patients with VP shunts [n=5], previous abdominal surgery [n=4], and severe TAD [n=1]). Regarding minor complications, 1 (6.6%) patient in the first group underwent unplanned PEG removal and 1 (10%) patient in the second group had peristomal granuloma. We observed three major complications: colon perforation (6.6%) in a patient with VP shunt, gastrocolic fistula (6.6%) in a patient with Fallot-tetralogy and severe TAD, and pneumoperitoneum (6.6%) caused by early tube dislodgement in an autistic patient with severe TAD. All the three complications occurred in the first group (20%). No major complications occurred in the second group. CONCLUSION: In high-risk patients, L-PEG may be safer than conventional PEG. Thus, L-PEG is recommended for high-risk patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA