Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4736, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961984

RESUMO

The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.


Assuntos
Receptores de Lisoesfingolipídeo , Esfingosina , Humanos , Sistema Imunitário , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia
2.
Commun Biol ; 5(1): 360, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422073

RESUMO

In this work we examine how small hydrophobic molecules such as inert gases interact with membrane proteins (MPs) at a molecular level. High pressure atmospheres of argon and krypton were used to produce noble gas derivatives of crystals of three well studied MPs (two different proton pumps and a sodium light-driven ion pump). The structures obtained using X-ray crystallography showed that the vast majority of argon and krypton binding sites were located on the outer hydrophobic surface of the MPs - a surface usually accommodating hydrophobic chains of annular lipids (which are known structural and functional determinants for MPs). In conformity with these results, supplementary in silico molecular dynamics (MD) analysis predicted even greater numbers of argon and krypton binding positions on MP surface within the bilayer. These results indicate a potential importance of such interactions, particularly as related to the phenomenon of noble gas-induced anaesthesia.


Assuntos
Anestésicos , Criptônio , Argônio/química , Argônio/farmacologia , Cristalografia por Raios X , Criptônio/química , Criptônio/metabolismo , Lipídeos
3.
Sci Data ; 7(1): 388, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184270

RESUMO

Structural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.


Assuntos
Cisteína/química , Leucotrienos/química , Receptores Acoplados a Proteínas G/química , Síncrotrons , Difração de Raios X , Cristalização , Humanos
5.
Nat Commun ; 11(1): 2137, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358514

RESUMO

The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Dobramento de Proteína , Rodopsina/química , Rodopsina/metabolismo , Sódio/metabolismo , Difração de Raios X
6.
Nat Commun ; 10(1): 5573, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811124

RESUMO

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Assuntos
Mutação , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Animais , Asma/genética , Asma/metabolismo , Simulação por Computador , Cristalografia por Raios X , Células HEK293 , Humanos , Leucotrieno D4/metabolismo , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese , Conformação Proteica , Engenharia de Proteínas , Receptores de Leucotrienos/efeitos dos fármacos , Células Sf9
7.
Sci Adv ; 5(4): eaav2671, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30989112

RESUMO

Rhodopsins are the most universal biological light-energy transducers and abundant phototrophic mechanisms that evolved on Earth and have a remarkable diversity and potential for biotechnological applications. Recently, the first sodium-pumping rhodopsin KR2 from Krokinobacter eikastus was discovered and characterized. However, the existing structures of KR2 are contradictory, and the mechanism of Na+ pumping is not yet understood. Here, we present a structure of the cationic (non H+) light-driven pump at physiological pH in its pentameric form. We also present 13 atomic structures and functional data on the KR2 and its mutants, including potassium pumps, which show that oligomerization of the microbial rhodopsin is obligatory for its biological function. The studies reveal the structure of KR2 at nonphysiological low pH where it acts as a proton pump. The structure provides new insights into the mechanisms of microbial rhodopsins and opens the way to a rational design of novel cation pumps for optogenetics.


Assuntos
Rodopsina/química , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Rodopsina/genética , Rodopsina/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Relação Estrutura-Atividade
8.
Sci Adv ; 3(9): e1603187, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948217

RESUMO

Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.


Assuntos
Optogenética , Bombas de Próton/metabolismo , Rodopsina/metabolismo , Archaea/metabolismo , Sítios de Ligação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luz , Lipossomos , Modelos Moleculares , Optogenética/métodos , Ligação Proteica , Conformação Proteica , Prótons , Retina/metabolismo , Rodopsina/química , Análise Espectral
9.
Nat Struct Mol Biol ; 22(5): 390-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849142

RESUMO

Recently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus rhodopsin 2 (KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics.


Assuntos
Flavobacteriaceae/enzimologia , Rodopsina/ultraestrutura , ATPase Trocadora de Sódio-Potássio/ultraestrutura , Cristalografia por Raios X , Transporte de Íons , Modelos Moleculares , Potássio/metabolismo , Estrutura Terciária de Proteína , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA