Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cancers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760498

RESUMO

Autophagy plays a complex role in breast cancer cell survival, metastasis, and chemotherapeutic resistance. Dipeptidyl peptidase (DPP)-4, a therapeutic target for type 2 diabetes mellitus, is also involved in autophagic flux. The potential influence of DPP-4 suppression on cancer biology remains unknown. Here, we report that DPP-4 deficiency promotes breast cancer cell survival via the induction of autophagy by the C-X-C motif chemokine 12 (CXCL12)/C-X-C receptor 4 (CXCR4)/mammalian target of rapamycin (mTOR)/hypoxia inducible factor (HIF)-1α axis. DPP-4 knockdown and DPP-4 inhibitor KR62436 (KR) treatment both increased the levels of LC3II and HIF-1α in cultured human breast and mouse mammary cancer cells. The KR-induced autophagic phenotype in cancer cells was inhibited by treatment with the CXCR4 inhibitor AMD3100 and rapamycin. HIF-1α knockdown also suppressed breast cancer autophagy induced by KR. The autophagy inhibitor 3-methyladenine significantly blocked the KR-mediated suppression of cleaved caspase-3 levels and apoptosis in breast cancer cell lines. Finally, we found that the metformin-induced apoptosis of DPP-4-deficient 4T1 mammary cancer cells was associated with the suppression of autophagy. Our findings identify a novel role for DPP-4 inhibition in the promotion of breast cancer survival by inducing CXCL12/CXCR4/mTOR/HIF-1α axis-dependent autophagy. Metformin is a potential drug that counteracts the breast cancer cell survival system.

2.
J Diabetes Investig ; 14(7): 844-855, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37092329

RESUMO

AIMS/INTRODUCTION: Linagliptin is a selective dipeptidyl peptidase (DPP)-4 inhibitor capable of successfully regulating blood glucose levels. The cardiovascular protective effects of several DPP-4 inhibitors have been shown in preclinical studies; however, the detailed influence of DPP-4 inhibitors on diabetic pathological alterations in cardiac tissue has not yet been elucidated. MATERIALS AND METHODS: We combined laboratory-based experiments and bioinformatics techniques to identify suitable candidate targets with significant biological pathways. Mice with streptozotocin-induced insulin deficiency diabetic model were utilized for in vivo experiments. Mice were euthanized at 24 weeks after the induction of diabetes; linagliptin intervention was carried out for 4 weeks before euthanasia. Microarray analysis of heart samples was carried out. RESULTS: Mice with streptozotocin-induced diabetes, but not control mice, showed cardiac fibrosis with an endothelial-mesenchymal transition program, and myocardial fiber and sarcomere disruption; linagliptin alleviated these diabetes-associated pathological alterations without altering blood glucose levels. Bioinformatics analysis utilizing a microarray dataset identified 10 hub genes that were confirmed to have human disease relevance by Gene Expression Omnibus analysis. Among these hub genes, we focused on the Sox9-necroptosis axis as a therapeutic target in diabetic hearts. Indeed, diabetic mice showed the induction of necroptosis-associated genes and the phosphorylation of RIP3 and mixed lineage kinase domain-like protein. CONCLUSIONS: Linagliptin showed excellent heart protection in mice with streptozotocin-induced diabetes associated with alterations in human disease-relevant hub genes. Further investigation is required to determine why DPP-4 inhibitors do not show similar superior organ-protective effects in the clinical setting.


Assuntos
Diabetes Mellitus Experimental , Inibidores da Dipeptidil Peptidase IV , Humanos , Camundongos , Animais , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Miócitos Cardíacos/metabolismo , Glicemia , Estreptozocina , Necroptose , Hipoglicemiantes/uso terapêutico , Fibrose , Dipeptidil Peptidase 4
3.
Cells ; 12(4)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36831262

RESUMO

Aging is a major risk factor for the leading causes of mortality, and the incidence of age-related diseases including cardiovascular disease, kidney disease and metabolic disease increases with age. NAD+ is a classic coenzyme that exists in all species, and that plays a crucial role in oxidation-reduction reactions. It is also involved in the regulation of many cellular functions including inflammation, oxidative stress and differentiation. NAD+ declines with aging in various organs, and the reduction in NAD+ is possibly involved in the development of age-related cellular dysfunction in cardiorenal metabolic organs through the accumulation of inflammation and oxidative stress. Levels of NAD+ are regulated by the balance between its synthesis and degradation. CD38 is the main NAD+-degrading enzyme, and CD38 is activated in response to inflammation with aging, which is associated with the reduction in NAD+ levels. In this review, focusing on CD38, we discuss the role of CD38 in aging and the pathogenesis of age-related diseases, including cardiorenal metabolic disease.


Assuntos
ADP-Ribosil Ciclase 1 , Envelhecimento , Doenças Metabólicas , Humanos , ADP-Ribosil Ciclase 1/metabolismo , Inflamação , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia
4.
Cell Rep ; 41(3): 111497, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261021

RESUMO

Non-alcoholic steatohepatitis (NASH) occasionally occurs under obesity; however, factors modulating the natural history of fatty liver disease remain unknown. Since hypothalamic orexin that regulates physical activity and autonomic balance prevents obesity, we investigate its role in NASH development. Male orexin-deficient mice fed a high-fat diet (HFD) show severe obesity and progression of NASH with fibrosis in the liver. Hepatic fibrosis also develops in ovariectomized orexin-deficient females fed an HFD but not ovariectomized wild-type controls. Moreover, long-term HFD feeding causes hepatocellular carcinoma (HCC) in orexin-deficient mice. Intracerebroventricular injection of orexin A or pharmacogenetic activation of orexin neurons acutely activates hepatic mTOR-sXbp1 pathway to prevent endoplasmic reticulum (ER) stress, a NASH-causing factor. Daily supplementation of orexin A attenuates hepatic ER stress and inflammation in orexin-deficient mice fed an HFD, and autonomic ganglionic blocker suppresses the orexin actions. These results suggest that hypothalamic orexin is an essential factor for preventing NASH and associated HCC under obesity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Feminino , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/prevenção & controle , Orexinas , Neoplasias Hepáticas/prevenção & controle , Obesidade/complicações , Serina-Treonina Quinases TOR
5.
Medicines (Basel) ; 9(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447873

RESUMO

We report a novel missense mutation, p.Ile424Ser, in the PKD2 gene of an autosomal dominant polycystic kidney disease (ADPKD) patient with multiple liver cysts. A 57-year-old woman presented to our university hospital with abdominal fullness, decreasing appetite, and dyspnea for three months. A percutaneous drainage of hepatic cysts was performed with no significant symptomatic relief. A computed tomography (CT) scan revealed a hepatic cyst in the lateral portion of the liver with appreciable compression of the stomach. Prior to this admission, the patient had undergone three drainage procedures with serial CT-based follow-up of the cysts over the past 37 years. With a presumptive diagnosis of extrarenal manifestation of ADPKD, we performed both a hepatic cystectomy and a hepatectomy. Because the patient reported a family history of hepatic cysts, we conducted a postoperative genetic analysis. A novel missense mutation, p.Ile424Ser, was detected in the PKD2 gene. Mutations in either the PKD1 or PKD2 genes account for most cases of ADPKD. To the extent of our knowledge, this point mutation has not been reported in the general population. Our in-silico analysis suggests a hereditary likely pathogenic mutation.

6.
J Diabetes Investig ; 13(6): 955-964, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35098679

RESUMO

AIMS/INTRODUCTION: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been shown to display excellent renoprotective effects in diabetic kidney disease with macroalbuminuria/proteinuria. Regarding the renoprotective mechanism of SGLT2i, a sophisticated hypothesis was made by explaining the suppression of glomerular hypertension/hyperfiltration through the adenosine/adenosine type 1 receptor (A1R) signaling-mediated restoration of the tubuloglomerular feedback mechanism; however, how such A1R signaling is relevant for renoprotection by SGLT2i in diabetic kidney disease with proteinuria has not been elucidated. MATERIALS AND METHODS: Streptozotocin-induced diabetic CD-1 mice were injected with bovine serum albumin (BSA) and treated with SGLT2i in the presence/absence of A1R inhibitor administration. RESULTS: We found that the influences of SGLT2i are essentially independent of the activation of A1R signaling in the kidney of BSA-overloaded streptozotocin-induced diabetic mice. BSA-overloaded diabetic mice showed the trend of kidney damage with higher glomerular filtration rate (GFR) and the significant induction of fibrogenic genes, such as transforming growth factor-ß2 and collagen type III. SGLT2i TA-1887 suppressed diabetes-induced GFR in BSA-overloaded diabetic mice was associated with the significant suppression of transforming growth factor-ß2 and collagen type III; A1R-specific inhibitor 8-cyclopentyl-1,3-dipropylxanthine did not cancel the effects of TA-1887 on either GFR or associated gene levels. Both TA-1887 and 8-cyclopentyl-1,3-dipropylxanthine-treated BSA-overloaded diabetic mice showed suppressed glycated hemoglobin levels associated with the increased food intake. When analyzing the association among histological evaluation, GFR and potential fibrogenic gene levels, each group of mice showed distinct correlation patterns. CONCLUSIONS: A1R signaling activation was not the dominant mechanism on the influence of SGLT2i in the kidney of BSA-overloaded diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Receptores Purinérgicos P1/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Colágeno Tipo III/metabolismo , Colágeno Tipo III/farmacologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Humanos , Rim , Camundongos , Proteinúria/metabolismo , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia , Transdução de Sinais , Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Estreptozocina , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
7.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199672

RESUMO

Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.


Assuntos
Diabetes Mellitus/genética , Nefropatias Diabéticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica/genética , Humanos , Rim/metabolismo , Rim/patologia , Fenótipo
8.
Cells ; 10(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200774

RESUMO

Sodium-glucose cotransporter2 (SGLT2) inhibitors have a reno-protective effect in diabetic kidney disease. However, the detailed mechanism remains unclear. In this study, human proximal tubular cells (HK-2) were cultured in 5 mM glucose and 25 mM mannitol (control), 30 mM glucose (high glucose: HG), or HG and SGLT2 inhibitor, dapagliflozin-containing medium for 48 h. The autophagic flux was decreased, accompanied by the increased phosphorylation of S6 kinase ribosomal protein (p-S6RP) and the reduced phosphorylation of AMP-activated kinase (p-AMPK) expression in a HG condition. Compared to those of the control, dapagliflozin and SGLT2 knockdown ameliorated the HG-induced alterations of p-S6RP, p-AMPK, and autophagic flux. In addition, HG increased the nuclear translocation of nuclear factor-κB p65 (NF-κB) p65 and the cytoplasmic nucleotide-binding oligomerization domain-like receptor 3 (NLRP3), mature interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factorα (TNFα) expression. Dapagliflozin, SGLT2 knockdown, and NF-κB p65 knockdown reduced the extent of these HG-induced inflammatory alterations. The inhibitory effect of dapagliflozin on the increase in the HG-induced nuclear translocation of NF-κB p65 was abrogated by knocking down AMPK. These data indicated that in diabetic renal proximal tubular cells, dapagliflozin ameliorates: (1) HG-induced autophagic flux reduction, via increased AMPK activity and mTOR suppression; and (2) inflammatory alterations due to NF-κB pathway suppression.


Assuntos
Autofagia/efeitos dos fármacos , Glucose/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Linhagem Celular , Nefropatias Diabéticas , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia
9.
Cancers (Basel) ; 13(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063285

RESUMO

DPP-4/CD26, a membrane-bound glycoprotein, is ubiquitously expressed and has diverse biological functions. Because of its enzymatic action, such as the degradation of incretin hormones, DPP-4/CD26 is recognized as the significant therapeutic target for type 2 diabetes (T2DM); DPP-4 inhibitors have been used as an anti-diabetic agent for a decade. The safety profile of DPP-4 inhibitors for a cardiovascular event in T2DM patients has been widely analyzed; however, a clear association between DPP-4 inhibitors and tumor biology is not yet established. Previous preclinical studies reported that DPP-4 suppression would impact tumor progression processes. With regard to this finding, we have shown that the DPP-4 inhibitor induces breast cancer metastasis and chemoresistance via an increase in its substrate C-X-C motif chemokine 12, and the consequent induction of epithelial-mesenchymal transition in the tumor. DPP-4/CD26 plays diverse pivotal roles beyond blood glucose control; thus, DPP-4 inhibitors can potentially impact cancer-bearing T2DM patients either favorably or unfavorably. In this review, we primarily focus on the possible undesirable effect of DPP-4 inhibition on tumor biology. Clinicians should note that the safety of DPP-4 inhibitors for diabetic patients with an existing cancer is an unresolved issue, and further mechanistic analysis is essential in this field.

10.
Nat Commun ; 12(1): 2368, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888696

RESUMO

Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes.


Assuntos
Nefropatias Diabéticas/patologia , Endotélio/patologia , Hipercolesterolemia/complicações , Túbulos Renais/patologia , Receptores de Glucocorticoides/deficiência , Adrenalectomia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Células Endoteliais/patologia , Endotélio/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Ácidos Graxos/metabolismo , Fibrose , Glucocorticoides/metabolismo , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/etiologia , Hipercolesterolemia/patologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Túbulos Renais/citologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Oxirredução , Receptores de Glucocorticoides/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
11.
Endocr J ; 68(8): 943-952, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33814485

RESUMO

Although Rathke's cleft cysts (RCCs) are common sellar/parasellar lesions, studies examining pituitary function in patients with nonsurgical RCC are limited. This study aimed to clarify the importance of RCCs, including small nonsurgical ones, as a cause of hypopituitarism by determining the prevalence of pituitary hormone secretion impairment and its relationship to cyst/tumor size in patients with RCC and in those with nonfunctioning pituitary adenoma (NFA). We retrospectively investigated the basal levels of each anterior pituitary hormone, its responses in the stimulation test(s), and cyst/tumor size in patients with RCC (n = 67) and NFA (n = 111) who were consecutively admitted to our hospital for endocrinological evaluation. RCCs were much smaller than NFAs (median height, 12 vs. 26 mm). The prevalence of gonadotropin, PRL, and GH secretion impairment in RCC was lower in comparison to NFA (19% vs. 44%, 34% vs. 61%, and 24% vs. 46%, respectively), whereas the prevalence of TSH and ACTH secretion impairment was comparable (21-27% and 17-24%, respectively). A significant positive relationship between cyst/tumor size and number of impaired hormones was observed in both groups, but smaller cysts could cause hormone secretion impairment in RCC. Stimulation tests suggested that most hormone secretion impairment was attributable to the interrupted hypothalamic-pituitary axis in both groups. Therefore, RCC, even small ones, can cause pituitary dysfunction. Different mechanisms may underlie hypothalamic-pituitary interruption in RCC and NFA.


Assuntos
Adenoma/fisiopatologia , Cistos do Sistema Nervoso Central/fisiopatologia , Adeno-Hipófise/fisiopatologia , Neoplasias Hipofisárias/fisiopatologia , Adenoma/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Cistos do Sistema Nervoso Central/sangue , Feminino , Hormônio Liberador de Gonadotropina/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/sangue , Estudos Retrospectivos , Tireotropina/sangue , Adulto Jovem
12.
Biomedicines ; 9(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572965

RESUMO

Enhanced oxidative stress is closely related to aging and impaired metabolic health and is influenced by diet-derived nutrients and energy. Recent studies have shown that methionine restriction (MetR) is related to longevity and metabolic health in organisms from yeast to rodents. The effect of MetR on lifespan extension and metabolic health is mediated partially through a reduction in oxidative stress. Methionine metabolism is involved in the supply of methyl donors such as S-adenosyl-methionine (SAM), glutathione synthesis and polyamine metabolism. SAM, a methionine metabolite, activates mechanistic target of rapamycin complex 1 and suppresses autophagy; therefore, MetR can induce autophagy. In the process of glutathione synthesis in methionine metabolism, hydrogen sulfide (H2S) is produced through cystathionine-ß-synthase and cystathionine-γ-lyase; however, MetR can induce increased H2S production through this pathway. Similarly, MetR can increase the production of polyamines such as spermidine, which are involved in autophagy. In addition, MetR decreases oxidative stress by inhibiting reactive oxygen species production in mitochondria. Thus, MetR can attenuate oxidative stress through multiple mechanisms, consequently associating with lifespan extension and metabolic health. In this review, we summarize the current understanding of the effects of MetR on lifespan extension and metabolic health, focusing on the reduction in oxidative stress.

13.
J Diabetes Investig ; 12(9): 1577-1585, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33417741

RESUMO

AIMS/INTRODUCTION: The aim of this study was to elucidate whether sodium-glucose cotransporter 2 inhibitors (SGLT2is) treatment has any renoprotective effect for type 2 diabetes mellitus patients with an estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2 in clinical practice. MATERIALS AND METHODS: We evaluated the annual eGFR slope in 85 type 2 diabetes mellitus patients with renal impairment, treated with SGLT2is ≥2 years. Each patient's eGFR was <60 mL/min/1.73 m2 at the start of SGLT2is therapy. The calculation of the annual change in eGFR for each patient was obtained by acquired eGFR data before and after 2 years of the initial SGLT2is administration, followed by analysis of the changes in the mean eGFR slope. RESULTS: The participants' mean age was 72.0 ± 9.4 years, and the mean eGFR was 47.1 ± 9.7 mL/min/1.73 m2 at the start of additional treatment with SGLT2is. The mean annual eGFR slope after SGLT2is administration (-0.11 ± 0.20 mL/min/1.73 m2 /year) was significantly slower than before SGLT2is administration (-2.93 ± 0.59 mL/min/1.73 m2 /year; P < 0.0001). Additionally, SGLT2is treatment slowed the annual decline of eGFR, independent of the levels of both the initial eGFR and albuminuria levels before SGLT2is therapy was started. In the patient groups who showed an annual eGFR decline of ≥3 and 1-3 mL/min/1.73 m2 , there was a significant slowing of the decline after SGLT2is therapy, compared with before the treatment (P < 0.001, respectively). CONCLUSIONS: SGLT2is administration slows the decline observed in the annual renal function in type 2 diabetes mellitus patients with eGFR of <60 mL/min/1.73 m2 in clinical practice.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Taxa de Filtração Glomerular , Rim/efeitos dos fármacos , Padrões de Prática Médica/estatística & dados numéricos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Idoso , Glicemia/análise , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/patologia , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Estudos Retrospectivos
14.
Mol Cancer Res ; 19(1): 61-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32994182

RESUMO

The biological influence of antidiabetic drugs on cancer cells and diabetic cancer patients has not yet been completely elucidated. We reported that a dipeptidyl peptidase (DPP)-4 inhibitor accelerates mammary cancer metastasis by inducing epithelial-mesenchymal transition (EMT) through the CXCL12/CXCR4/mTOR axis. Metformin has been shown to inhibit the mTOR signaling pathway. In this study, we investigated whether metformin mitigates breast cancer metastasis induced by a DPP-4 inhibitor via suppression of mTOR signaling. In cultured mouse mammary and human breast cancer cells, metformin suppressed DPP-4 inhibitor KR62436 (KR)-induced EMT and cell migration via suppression of the mTOR pathway associated with AMPK activation. For the in vivo study, metformin intervention was performed in an allograft 4T1 breast cancer model mouse with or without KR. We also analyzed mice transplanted with shRNA-mediated DPP-4 knockdown 4T1 cells. Treatment with metformin inhibited the lung metastasis of DPP-4-deficient 4T1 mammary tumor cells generated by either KR administration or DPP-4 knockdown. Immunostaining of primary tumors indicated that DPP-4 suppression promoted the expression of EMT-inducing transcription factor Snail through activation of the CXCR4-mediated mTOR/p70S6K pathway in an allograft breast cancer model; metformin abolished this alteration. Metformin treatment did not alter DPP-4-deficiency-induced expression of CXCL12 in either plasma or primary tumors. Our findings suggest that metformin may serve as an antimetastatic agent by mitigating the undesirable effects of DPP-4 inhibitors in patients with certain cancers. IMPLICATIONS: Metformin could combat the detrimental effects of DPP-4 inhibitor on breast cancer metastasis via mTOR suppression, suggesting the potential clinical relevance. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/1/61/F1.large.jpg.


Assuntos
Neoplasias da Mama/induzido quimicamente , Dipeptidil Peptidase 4/efeitos adversos , Perfilação da Expressão Gênica/métodos , Metformina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Animais , Neoplasias da Mama/patologia , Dipeptidil Peptidase 4/farmacologia , Feminino , Humanos , Metformina/farmacologia , Camundongos , Metástase Neoplásica , Transdução de Sinais
15.
Hypertension ; 76(6): 1935-1944, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131311

RESUMO

Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis. We have reported that N-acetyl-seryl-aspartyl- lysyl-proline (AcSDKP) restored levels of diabetes mellitus-suppressed FGFR1 (fibroblast growth factor receptor 1), the endothelial receptor essential for combating EndMT. However, the molecular regulation and biological/pathological significance of the AcSDKP-FGFR1 relationship has not been elucidated yet. Here, we demonstrated that endothelial FGFR1 deficiency led to AcSDKP-resistant EndMT and severe fibrosis associated with EndMT-stimulated fibrogenic programming in neighboring cells. Diabetes mellitus induced severe kidney fibrosis in endothelial FGFR1-deficient mice (FGFR1fl/fl; VE-cadherin-Cre: FGFR1EKO) but not in control mice (FGFR1fl/fl); AcSDKP completely or partially suppressed kidney fibrosis in control or FGFR1EKO mice. Severe fibrosis was also induced in hearts of diabetic FGFR1EKO mice; however, AcSDKP had no effect on heart fibrosis in FGFR1EKO mice. AcSDKP also had no effect on EndMT in either kidney or heart but partially suppressed epithelial-to-mesenchymal transition in kidneys of diabetic FGFR1EKO mice. The medium from FGFR1-deficient endothelial cells stimulated TGFß (transforming growth factor ß)/Smad-dependent epithelial-to-mesenchymal transition in cultured human proximal tubule epithelial cell line, AcSDKP inhibited such epithelial-to-mesenchymal transition. These data demonstrated that endothelial FGFR1 is essential as an antifibrotic core molecule as the target of AcSDKP.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Endotélio/metabolismo , Rim/metabolismo , Miocárdio/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Endotélio/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Rim/patologia , Túbulos Renais Proximais/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Oligopeptídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
16.
Nutrients ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053742

RESUMO

The aim of this study was to investigate the effects of dietary supplementation with a nonalcoholic red wine extract (RWE), including resveratrol and polyphenols, on insulin sensitivity and Sirt1 expression in nondiabetic humans. The present study was a single-arm, open-label and prospective study. Twelve subjects received supplementation with RWE, including 19.2 mg resveratrol and 136 mg polyphenols, daily for 8 weeks. After 8 weeks, metabolic parameters, including glucose/lipid metabolism and inflammatory markers, were evaluated. mRNA expression of Sirt1 was evaluated in isolated peripheral blood mononuclear cells (PBMNCs). Additionally, Sirt1 and phosphorylated AMP-activated kinase (p-AMPK) expression were evaluated in cultured human monocytes (THP-1 cells). Supplementation with RWE for 8 weeks decreased the homeostasis model assessment for insulin resistance (HOMA-IR), which indicates an increase in insulin sensitivity. Serum low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG) and interleukin-6 (IL-6) were significantly decreased by RWE supplementation for 8 weeks. Additionally, Sirt1 mRNA expression in isolated PBMNCs was significantly increased after 8 weeks of RWE supplementation. Moreover, the rate of increase in Sirt1 expression was positively correlated with the rate of change in HOMA-IR. The administration of RWE increased Sirt1 and p-AMPK expression in cultured THP-1 cells. Supplementation with RWE improved metabolism, such as insulin sensitivity, lipid profile and inflammation, in humans. Additionally, RWE supplementation induced an increase in Sirt1 expression in PBMNCs, which may be associated with an improvement in insulin sensitivity.


Assuntos
Resistência à Insulina , Leucócitos Mononucleares/efeitos dos fármacos , Sirtuína 1/genética , Vinho/análise , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Feminino , Humanos , Interleucina-6/sangue , Leucócitos Mononucleares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Polifenóis/farmacologia , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Células THP-1 , Triglicerídeos/sangue , Adulto Jovem , gama-Glutamiltransferase/sangue
17.
Front Cell Dev Biol ; 8: 715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850834

RESUMO

Nutrients are closely involved in the regulation of lifespan and metabolic health. Cellular activities, such as the regulation of metabolism, growth, and aging, are mediated by a network of nutrients and nutrient-sensing pathways. Among the nutrient-sensing pathways, the mechanistic target of rapamycin complex 1 (mTORC1) acts as the central regulator of cellular functions, which include autophagy. Autophagy plays a significant role in the removal of protein aggregates and damaged or excess organelles, including mitochondria, to maintain intracellular homeostasis, which is involved in lifespan extension and cardiometabolic health. Moreover, dietary methionine restriction may have a beneficial effect on lifespan extension and metabolic health. In contrast, methionine may activate mTORC1 and suppress autophagy. As the mechanism of methionine sensing on mTORC1, SAMTOR was identified as a sensor of S-adenosyl methionine (SAM), a metabolite of methionine, in the cytoplasm. Conversely, methionine may activate the mTORC1 signaling pathway through the activation of phosphatase 2A (PP2A) because of increased methylation in response to intracellular SAM levels. In this review, we summarized the recent findings regarding the mechanism via which methionine activates mTORC1.

18.
Front Physiol ; 11: 755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760286

RESUMO

The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2 •-) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2 •-, and its by-product, peroxynitrite (ONOO-), which is generated by a reaction between O2 •- with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.

19.
Angiogenesis ; 23(4): 667-684, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32699964

RESUMO

Platelet-derived growth factor-B (PDGF-B) is a main factor to promote adipose tissue angiogenesis, which is responsible for the tissue expansion in obesity. In this process, PDGF-B induces the dissociation of pericytes from blood vessels; however, its regulatory mechanism remains unclear. In the present study, we found that stromal cell-derived factor 1 (SDF1) plays an essential role in this regulatory mechanism. SDF1 mRNA was increased in epididymal white adipose tissue (eWAT) of obese mice. Ex vivo pharmacological analyses using cultured adipose tissue demonstrated that physiological concentrations (1-100 pg/mL) of SDF1 inhibited the PDGF-B-induced pericyte dissociation from vessels via two cognate SDF1 receptors, CXCR4 and CXCR7. In contrast, higher concentrations (> 1 ng/mL) of SDF1 alone caused the dissociation of pericytes via CXCR4, and this effect disappeared in the cultured tissues from PDGF receptor ß (PDGFRß) knockout mice. To investigate the role of SDF1 in angiogenesis in vivo, the effects of anagliptin, an inhibitor of dipeptidyl peptidase 4 (DPP4) that degrades SDF1, were examined in mice fed a high-fat diet. Anagliptin increased the SDF1 levels in the serum and eWAT. These changes were associated with a reduction of pericyte dissociation and fat accumulation in eWAT. AMD3100, a CXCR4 antagonist, cancelled these anagliptin effects. In flow-cytometry analysis, anagliptin increased and decreased the PDGF-B expression in endothelial cells and macrophages, respectively, whereas anagliptin reduced the PDGFRß expression in pericytes of eWAT. These results suggest that SDF1 negatively regulates the adipose tissue angiogenesis in obesity by altering the reactivity of pericytes to PDGF-B.


Assuntos
Tecido Adiposo Branco/patologia , Tecido Adiposo Branco/fisiopatologia , Quimiocina CXCL12/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Remodelação Vascular , Tecido Adiposo Branco/irrigação sanguínea , Indutores da Angiogênese/metabolismo , Animais , Vasos Sanguíneos/patologia , Quimiocina CXCL12/sangue , Dieta Hiperlipídica , Epididimo/patologia , Comportamento Alimentar , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/patologia , Pirimidinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Magreza/patologia
20.
Aging (Albany NY) ; 12(12): 11325-11336, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32507768

RESUMO

Mitochondrial oxidative stress is a significant contributor to the pathogenesis of diabetic kidney disease (DKD). We previously showed that mitochondrial oxidative stress in the kidneys of Zucker diabetic fatty rats is associated with a decreased intracellular NAD+/NADH ratio and NAD+-dependent deacetylase Sirt3 activity, and increased expression of the NAD+-degrading enzyme CD38. In this study, we used a CD38 inhibitor, apigenin, to investigate the role of CD38 in DKD. Apigenin significantly reduced renal injuries, including tubulointerstitial fibrosis, tubular cell damage, and pro-inflammatory gene expression in diabetic rats. In addition, apigenin down-regulated CD38 expression, and increased the intracellular NAD+/NADH ratio and Sirt3-mediated mitochondrial antioxidative enzyme activity in the kidneys of diabetic rats. In vitro, inhibition of CD38 activity by apigenin or CD38 knockdown increased the NAD+/NADH ratio and Sirt3 activity in renal proximal tubular HK-2 cells cultured under high-glucose conditions. Together, these results demonstrate that by inhibiting the Sirt3 activity and increasing mitochondrial oxidative stress in renal tubular cells, CD38 plays a crucial role in the pathogenesis of DKD.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/patologia , Glicoproteínas de Membrana/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo , ADP-Ribosil Ciclase/antagonistas & inibidores , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/genética , Animais , Apigenina/farmacologia , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Células Epiteliais , Técnicas de Silenciamento de Genes , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Mitocôndrias/patologia , NAD/metabolismo , Estresse Oxidativo , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA