Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36607602

RESUMO

Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.


Assuntos
Placenta , Placentação , Animais , Feminino , Gravidez , Ratos , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Placenta/metabolismo , Placentação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trofoblastos , Útero
2.
Theriogenology ; 173: 221-229, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399386

RESUMO

Glucocorticoids (GCs) are known to play an important role in maintaining basal and stress-related homeostasis by interacting with endocrine mediators and prostaglandins (PGs). Although a growing body of evidence shows that GCs exert their regulatory action at a multitude of sites in the reproductive axis through corticosteroid receptors, little is known about the direct role of cortisol, an active form of GCs, in the equine endometrium. Thus, the study aimed to determine the effect of cortisol on PGF2α synthesis in the endometrial tissue and cells in vitro. In Exp.1, the immunolocalization and the expression of the glucocorticoid receptor (GCR) in the endometrium throughout the estrous cycle were established. In Exp. 2 and 3, the effects of cortisol on PGF2α secretion and transcripts associated with the arachidonic acid (AA) cascade in endometrial tissues, and cells were defined. Endometrial tissues obtained from the early, mid, and late luteal phases and the follicular phase of the estrous cycle were exposed to cortisol (100, 200, and 400 nM) for 24 h. Endometrial epithelial and stromal cells (early phase of estrous cycle) were exposed to cortisol (100 nM) for 24 h. Then, PGF2α secretion and transcripts associated with the AA cascade (PLA2G2A, PLA2G4A, PTGS2, and PGFS) were assessed. GCR was expressed in the cytoplasm and the nucleus in the luminal and glandular epithelium as well as in the stroma. Endometrial GCR protein abundance was up-regulated at the late luteal phase compared to the mid-luteal phase of the estrous cycle. Cortisol dose-dependently decreased PGF2α secretion, PLA2G2A and PLA2G4A transcripts in endometrial tissues. Additionally, cortisol treatment decreased PGF2α secretion from endometrial epithelial and stromal cells. Moreover, it affected PLA2G2A, PLA2G4A, and PTGS2 transcripts in endometrial stromal cells. These findings suggest that cortisol suppresses the synthesis of PGF2α by affecting the AA cascade in the equine endometrium during the estrous cycle.


Assuntos
Dinoprosta , Hidrocortisona , Animais , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Dinoprosta/metabolismo , Dinoprosta/farmacologia , Dinoprostona/metabolismo , Endométrio/metabolismo , Feminino , Cavalos , Hidrocortisona/metabolismo , Redes e Vias Metabólicas
3.
FASEB J ; 35(2): e21272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423320

RESUMO

Interleukin 33 (IL33) signaling has been implicated in the establishment and maintenance of pregnancy and in pregnancy disorders. The goal of this project was to evaluate the role of IL33 signaling in rat pregnancy. The rat possesses hemochorial placentation with deep intrauterine trophoblast invasion; features also characteristic of human placentation. We generated and characterized a germline mutant rat model for IL33 using CRISPR/Cas9 genome editing. IL33 deficient rats exhibited deficits in lung responses to an inflammatory stimulus (Sephadex G-200) and to estrogen-induced uterine eosinophilia. Female rats deficient in IL33 were fertile and exhibited pregnancy outcomes (gestation length and litter size) similar to wild-type rats. Placental weight was adversely affected by the disruption of IL33 signaling. A difference in pregnancy-dependent adaptations to lipopolysaccharide (LPS) exposure was observed between wild-type and IL33 deficient pregnancies. Pregnancy in wild-type rats treated with LPS did not differ significantly from pregnancy in vehicle-treated wild-type rats. In contrast, LPS treatment decreased fetal survival rate, fetal and placental weights, and increased fetal growth restriction in IL33 deficient rats. In summary, a new rat model for investigating IL33 signaling has been established. IL33 signaling participates in the regulation of placental development and protection against LPS-induced fetal and placental growth restriction.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Interleucina-33/metabolismo , Doenças Placentárias/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Transdução de Sinais , Animais , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/patologia , Interleucina-33/genética , Lipopolissacarídeos/toxicidade , Mutação , Doenças Placentárias/etiologia , Doenças Placentárias/patologia , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Ratos , Ratos Sprague-Dawley
4.
J Reprod Dev ; 64(2): 193-197, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29311525

RESUMO

We investigated the electrical impedance of the reproductive tracts (vagina and uterine endometrial tissues) and the expression of mucus-related genes to identify the stage of the estrous cycle in mares. We first examined vaginal impedance in native Hokkaido mares during their estrous cycle and found no significant differences. However, impedance levels tended to decrease towards ovulation. Furthermore, we investigated the estrous cycle by measuring the electrical impedance of the uterine endometrial tissues obtained from carcasses of mares. We found that impedance levels in the endometrial tissues decreased in the regressed phase of the corpus luteum (CL). Expression of mucus-related genes (ATP1A1, CFTR, AQP3, and AQP5) varied at different stages of the estrous cycle. Among them, AQP3 expression was consistent with previous reports. We concluded that electrical impedance in the uterine endometrial tissues of mares could be potentially used to verify the presence of active CL in horses for experimental purposes. However, further studies are needed to determine the reference value and to identify the day of the estrous cycle in mares.


Assuntos
Endométrio/metabolismo , Detecção do Estro , Regulação da Expressão Gênica no Desenvolvimento , Luteinização/metabolismo , Luteólise/metabolismo , Muco/metabolismo , Matadouros , Animais , Animais Endogâmicos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Endométrio/química , Estudos de Viabilidade , Feminino , Cavalos , Japão , Mucosa/química , Mucosa/metabolismo , Muco/química , Especificidade de Órgãos , Estações do Ano , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Vagina/química , Vagina/metabolismo
5.
Reproduction ; 151(5): 517-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26908917

RESUMO

In mares, prostaglandin F2α (PGF2α) secreted from the endometrium is a major luteolysin. Some domestic animals have an auto-amplification system in which PGF2α can stimulate its own production. Here, we investigated whether this is also the case in mares. In an in vivo study, mares at the mid-luteal phase (days 6-8 of estrous cycle) were injected i.m. with cloprostenol (250 µg) and blood samples were collected at fixed intervals until 72 h after treatment. Progesterone (P4) concentrations started decreasing 45 min after the injection and continued to decrease up to 24 h (P < 0.05). In turn, 13,14-dihydro-15-keto-PGF2α (PGFM) metabolite started to increase 4h after an injection and continued to increase up to 72 h (P < 0.05). PGF receptor (PTGFR) mRNA expression in the endometrium was significantly higher in the late luteal phase than in the early and regressed luteal phases (P < 0.05). In vitro, PGF2α significantly stimulated (P < 0.05) PGF2α production by endometrial tissues and endometrial epithelial and stromal cells and significantly increased (P < 0.05) the mRNA expression of prostaglandin-endoperoxide synthase-2 (PTGS2), an enzyme involved in PGF2α synthesis in endometrial cell. These findings strongly suggest the existence of an endometrial PGF2α auto-amplification system in mares.


Assuntos
Corpo Lúteo/metabolismo , Dinoprosta/farmacologia , Endométrio/metabolismo , Ciclo Estral/metabolismo , Células Estromais/metabolismo , Abortivos não Esteroides/farmacologia , Animais , Western Blotting , Células Cultivadas , Corpo Lúteo/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Endométrio/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Feminino , Cavalos , Progesterona/sangue , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos
6.
J Reprod Dev ; 60(2): 150-4, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24492656

RESUMO

Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P4) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20α-hydroxysteroid dehydrogenase (20α-HSD) catabolizes P4 into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20α-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P4 concentration and levels of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3ß-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20α-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P4 by AKR1C23 is one of the processes contributing to functional luteolysis in mares.


Assuntos
Aldeído Redutase/biossíntese , Corpo Lúteo/enzimologia , Cavalos/metabolismo , Fase Luteal/metabolismo , Luteólise/fisiologia , 20-alfa-Di-Hidroprogesterona/biossíntese , 20-alfa-Di-Hidroprogesterona/genética , 3-Hidroxiesteroide Desidrogenases/biossíntese , 3-Hidroxiesteroide Desidrogenases/genética , Aldeído Redutase/genética , Aldo-Ceto Redutases , Animais , Western Blotting , Feminino , Regulação Enzimológica da Expressão Gênica , Progesterona/biossíntese , Progesterona/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
7.
J Vet Med Sci ; 75(5): 629-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23220928

RESUMO

Insulin-like factor 3 (INSL3) is a local regulator in mammalian gonads, but little is known of its function in bovine corpus luteum (CL). Here, we show that RXFP2 protein, the receptor of INSL3, was expressed throughout the estrous cycle and significantly high at the early luteal stage compared to the regressed luteal stage. INSL3 stimulated progesterone secretion, but not prostaglandin F2α and viability in cultured luteal cells. Together, these results suggest that INSL3 plays a luteotropic role as a local regulator in the bovine CL.


Assuntos
Ciclo Estral/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Variância , Animais , Bovinos , Corpo Lúteo , Feminino , Progesterona/metabolismo
8.
J Reprod Dev ; 58(4): 393-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22498814

RESUMO

Although circulating progesterone (P4) levels tend to change with the season, little is known about the seasonal changes of P4 synthesis-related proteins in the corpus luteum (CL) of mares. To examine these changes, seventy-four ovaries containing a CL were collected from Anglo-Norman mares at a local abattoir in Kumamoto, Japan (~N32°), five times during one year. The stages of the CLs were classified as early, mid and regressed by macroscopic observation of the CL and follicles. The mid CL, which had the highest P4 concentration, was used to evaluate the seasonal changes in P4 synthesis. The luteal P4 concentration and mRNA expression of luteinizing hormone receptor (LHCGR) were lowest during early winter and highest during late winter. The mRNA expressions of steroidogenic acute regulatory protein (StAR), P450 cholesterol side-chain cleavage enzyme (P450scc) and 3ß-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3ß-HSD) were lowest during early winter and increased during late winter. These results suggest that P4 synthesis in the CL is affected by the seasonal changes in the mRNA expressions of P4 synthesis-related proteins in mares.


Assuntos
Corpo Lúteo/metabolismo , Regulação da Expressão Gênica , Cavalos/fisiologia , Fase Luteal/metabolismo , Progesterona/biossíntese , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Matadouros , Animais , Animais Endogâmicos , Canadá , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Corpo Lúteo/citologia , Feminino , Japão , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA