Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 61(24): 11384-11397, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30431269

RESUMO

The discovery of D1 subtype-selective agonists with drug-like properties has been an enduring challenge for the greater part of 40 years. All known D1-selective agonists are catecholamines that bring about receptor desensitization and undergo rapid metabolism, thus limiting their utility as a therapeutic for chronic illness such as schizophrenia and Parkinson's disease. Our high-throughput screening efforts on D1 yielded a single non-catecholamine hit PF-4211 (6) that was developed into a series of potent D1 receptor agonist leads with high oral bioavailability and CNS penetration. An important structural feature of this series is the locked biaryl ring system resulting in atropisomerism. Disclosed herein is a summary of our hit-to-lead efforts on this series of D1 activators culminating in the discovery of atropisomer 31 (PF-06256142), a potent and selective orthosteric agonist of the D1 receptor that has reduced receptor desensitization relative to dopamine and other catechol-containing agonists.


Assuntos
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/agonistas , Animais , Disponibilidade Biológica , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Cães , Agonistas de Dopamina/efeitos adversos , Relação Dose-Resposta a Droga , Células HEK293 , Meia-Vida , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
2.
Nat Commun ; 9(1): 674, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445200

RESUMO

Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of ß-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of ß-arrestin to D1Rs.


Assuntos
Membrana Celular/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/agonistas , beta-Arrestinas/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Agonistas de Dopamina/química , Agonistas de Dopamina/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Mutação , Ensaio Radioligante/métodos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
3.
Brain Struct Funct ; 223(2): 1035-1047, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299690

RESUMO

A loss-of-function polymorphism in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene has been linked to both drug abuse and schizophrenia. The α5 nAChR subunit is strategically positioned in the prefrontal cortex (PFC), where a loss-of-function in this subunit may contribute to cognitive disruptions in both disorders. However, the specific contribution of α5 to PFC-dependent cognitive functions has yet to be illustrated. In the present studies, we used RNA interference to knockdown the α5 nAChR subunit in the PFC of adult rats. We provide evidence that through its contribution to cholinergic modulation of cholinergic modulation of neurons in the PFC, the α5 nAChR plays a specific role in the recovery of attention task performance following distraction. Our combined data reveal the potent ability of this subunit to modulate the PFC and cognitive functions controlled by this brain region that are impaired in disease.


Assuntos
Atenção/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Masculino , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Análise e Desempenho de Tarefas , Transdução Genética
4.
Neurochem Int ; 100: 30-34, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27568861

RESUMO

The dorsal medial striatum is a crucial part of the neural network that subserves dynamic, goal-directed behaviors. Functional output of this nucleus is shaped, in part, by the influence of glutamatergic inputs. Striatal cholinergic systems have the capacity to modulate these excitatory inputs through presynaptic nicotinic acetylcholine receptors (nAChRs); however, the individual contribution of the two major nicotinic receptor subtypes, α4ß2 and α7, to such modulation is not well characterized. In the present experiments, glutamate biosensors were used to monitor nAChR-dependent glutamate release with high temporal precision in the dorsal medial striatum of rats. Both α4ß2 and α7 nAChRs were found to potently modulate glutamate release; however the two receptor subtypes do so in strikingly different ways. α7 nAChRs appear to enhance release from glutamatergic terminals. In contrast, α4ß2 nAChRs act as a brake on glutamate release via an interaction with local dopaminergic inputs and D2 receptors. Combined, the present data reveal the capacity of local striatal cholinergic signaling to dynamically modulate excitatory inputs through nAChRs.


Assuntos
Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animais , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Masculino , Nicotina/farmacologia , Terminações Pré-Sinápticas/metabolismo , Ratos Long-Evans
5.
Neuropharmacology ; 82: 41-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24647121

RESUMO

Kynurenic acid (KYNA) is a tryptophan metabolite that acts in the brain as an endogenous antagonist at multiple receptors, including glutamate and α7 nicotinic acetylcholine receptors. Increased levels of KYNA have been demonstrated in the brain of patients with a range of neurocognitive disorders, including schizophrenia, and are hypothesized to contribute to cognitive symptoms. Reducing KYNA levels by administering inhibitors of enzymes of the kynurenine pathway, particularly kynurenine aminotransferase II (KAT II), has been proposed as a treatment for such cognitive impairments. Here we report that administration of a systemically available KAT II inhibitor, PF-04859989, restores glutamate release events ("transients") evoked by pressure ejections of nicotine into the prefrontal cortex of rats exhibiting elevated KYNA levels. Nicotine-evoked glutamatergic transients can be reliably evoked and recorded after repeated pressure ejections of nicotine over 4-5 h. Systemic administration of l-kynurenine (100 mg/kg; i.p.) significantly increased frontal cortical KYNA levels and greatly attenuated the amplitude of nicotine-evoked glutamatergic transients. Systemic administration of PF-04859989 30 min prior to administration of l-kynurenine, but not when administered 30 min after l-kynurenine, restored glutamatergic transients recorded up to 75 min after the administration of the KAT II inhibitor. Furthermore, the KAT II inhibitor significantly reversed l-kynurenine-induced elevations of brain KYNA levels. The KAT II inhibitor did not affect nicotine-evoked glutamatergic transients in rats not pre-treated with l-kynurenine. Because PF-04859989 restores evoked glutamate signaling it therefore is a promising therapeutic compound for benefiting the cognitive symptoms of schizophrenia and other disorders associated with elevated brain KYNA levels.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Pirazóis/farmacologia , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Ácido Cinurênico/metabolismo , Cinurenina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microdiálise , Microeletrodos , Cloreto de Potássio/farmacologia , Córtex Pré-Frontal/fisiologia , Ratos Sprague-Dawley , Ratos Wistar , Transaminases/antagonistas & inibidores , Transaminases/metabolismo
6.
Biochem Pharmacol ; 78(7): 813-24, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19501054

RESUMO

The pharmacological properties and pharmacokinetic profile of the alpha4beta2 nicotinic acetylcholine receptor (nAChR) partial agonist varenicline provide an advantageous combination of free brain levels and functional potencies at the target receptor that for a large part explain its efficacy as a smoking cessation aid. Since alpha4beta2 and other nAChR subtypes play important roles in mediating central processes that control reward, mood, cognition and attention, there is interest in examining the effects of selective nAChR ligands such as varenicline in preclinical animal models that assess these behaviors. Here we describe results from studies on varenicline's effects in animal models of addiction, depression, cognition and attention and discuss these in the context of recently published preclinical and preliminary clinical studies that collected data on varenicline's effects on mood, cognition and alcohol abuse disorder. Taken together, the preclinical and the limited clinical data show beneficial effects of varenicline, but further clinical studies are needed to evaluate whether the preclinical effects observed in animal models are translatable to the clinic.


Assuntos
Afeto/efeitos dos fármacos , Benzazepinas/farmacologia , Cognição/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Quinoxalinas/farmacologia , Receptores Nicotínicos/fisiologia , Recompensa , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/psicologia , Animais , Atenção/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Depressão/tratamento farmacológico , Depressão/psicologia , Agonismo Parcial de Drogas , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Tabagismo/tratamento farmacológico , Tabagismo/psicologia , Vareniclina
7.
Biochem Biophys Res Commun ; 342(2): 452-8, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16487482

RESUMO

Nutritional factors have a critical influence during prenatal life on the development and regulation of networks involved in body weight and feeding regulation. To establish the influence of the macronutrient type on feeding regulatory mechanisms and more particularly on stimulatory pathways (galanin and orexins), we fed female rats on either a high-carbohydrate (HC), a high-fat (HF), or a well-balanced control diet during gestation and lactation, and measured peptide expression in the hypothalamus and important hormones (leptin, insulin) in their pups at weaning. HF weanlings were 30% lighter than control and HC pups (P<0.001). They were characterized by reduced plasma glucose and insulin levels (P<0.01 or less). Their galanin and orexin systems were upregulated as shown by the significant augmentation of mRNA expression in the paraventricular nucleus and lateral hypothalamus, respectively. Inhibitory peptides like corticotropin-releasing hormone and neurotensin were not affected by this dietary treatment during early life. There was, therefore, a more intense drive to eat in HF pups, perhaps to compensate for the lower body weight at weaning. HF diets during early life had meanwhile some positive consequences: the lower metabolic profile might be beneficial in precluding the development of obesity and metabolic syndrome later in life. This is however valid only if the orexigenic drive is normalized after weaning.


Assuntos
Envelhecimento/fisiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/biossíntese , Peptídeos/metabolismo , Envelhecimento/genética , Animais , Peso Corporal/genética , Feminino , Galanina/biossíntese , Galanina/genética , Hipotálamo/química , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neurotensina/metabolismo , Orexinas , Hormônios Peptídicos/metabolismo , Peptídeos/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans
8.
Exp Brain Res ; 162(2): 257-64, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15558253

RESUMO

Recent research has suggested that the pontomesencephalic tegmentum might be an important part of a network underlying sustained attention. The largest structure of the pontomesencephalic tegmentum is the pedunculopontine tegmental nucleus, which has ascending connections to thalamus and with corticostriatal systems. In this experiment we examined the performance of rats following bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on a test of sustained attention previously used to examine frontal cortical function. After an initial period of darkness, the rats had to attend continuously to a dim stimulus light that would, at unpredictable intervals, become transiently brighter. During this period of increased stimulus brightness the rats could press a lever to obtain a food reward. Rats were trained to a criterion level of performance before lesions were made. After surgery, sham lesioned rats (n=7) resumed accurate responding, with an average successful detection rate of approximately 70%. Pedunculopontine lesioned rats (n=7), however, only achieved a successful detection rate of approximately 40%. When the duration of the bright target stimulus was increased from 1.5 to 4 s, the performance of the pedunculopontine lesioned rats significantly improved. The observation that an increase in brightness duration caused a marked improvement in lesioned rats' performance suggests strongly that the impairment was in attention rather than motor ability or simple sensory processing. These data are taken to be consistent with the hypothesis that the pedunculopontine tegmental nucleus is an important part of a network maintaining attention.


Assuntos
Atenção/fisiologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Núcleo Tegmental Pedunculopontino/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Atenção/efeitos dos fármacos , Masculino , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA