Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 709: 149834, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547608

RESUMO

BACKGROUND: Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS: Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 µM or higher, whereas wild-type cells displayed cell death at a concentration of 30 µM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 µM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 µM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS: The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.


Assuntos
Genes p53 , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Cádmio/metabolismo , Queratina-17/genética , Queratina-17/metabolismo , Proteômica , Linhagem Celular , Morte Celular , Queratinócitos/metabolismo , Apoptose/genética
2.
Data Brief ; 42: 108274, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35647242

RESUMO

The HaCaT line of immortalized non-tumor cells is a popular model of keratinocytes used for dermatological studies, in the practice of toxicological tests, and in the study of skin allergic reactions. These cells maintain a stable keratinocyte phenotype, do not require specific growth factors during cultivation, and respond to keratinocyte differentiation stimuli. HaCaT cells bear two mutant p53 alleles - R282Q and H179Y. At least two mechanisms of GOF (gain-of-function) of mutant p53 are known: it affects functions of p63/p73 by inhibiting their binding to DNA; or it binds to new DNA sites by interacting with other transcription factors (NF-Y, E2F1, NF-KB, VDR, p63). Proteins of the P53 family play an important role in the regulation of proliferation and differentiation processes of human keratinocytes. Proteomic study of HaCaT cells with TP53 gene knockdown provides new data for understanding the limitations of HaCaT cells when using them as an experimental model of normal human keratinocytes. In this article we present datasets obtained through the high-throughput shotgun proteomics analysis of human immortalized HaCaT keratinocytes and p53 knockdown HaCaT keratinocytes. As a protocol for proteomic profiling of cells, we used the approach of obtaining LC-MS/MS measurements followed by their processing with MaxQuant software (version 1.6.3.4). The "RAW" files were deposited to the ProteomeXchange with identifier PXD033538.

3.
Oxid Med Cell Longev ; 2021: 6652775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093961

RESUMO

The redox-sensitive signaling system Keap1/Nrf2/ARE is a premier protective mechanism against oxidative stress that plays a key role in the pathogenesis and development of various diseases, including tuberculous granulomatous inflammation. We have previously reported that novel water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate) induces Keap1/Nrf2/ARE and attenuates inflammation. The aim of this study is the examination of the effect of TS-13 on tuberculous granulomatous inflammation. BALB/c mice were administered TS-13 (100 mg kg-1 day-1) through their drinking water starting immediately after Bacillus Calmette-Guérin (BCG) intravenous injection. Histological changes, production of reactive oxygen species (ROS) (activity of free-radical oxidation processes), and mRNA expression of Nrf2-driven, NF-κB-, AP-1-, and autophagy-dependent signal pathway genes in the liver and peritoneal exudate were evaluated 30 days later. After the 30th day of infection, the activity of the Keap1/Nrf2/ARE system was decreased and its effector genes entailed increasing ROS production in the liver. Therapeutic intervention with TS-13 is aimed at activating the Keap1/Nrf2/ARE system that leads to an increase in Nrf2 and Nrf2-mediated gene expression and a decrease in NF-κB expression. Changes in these pathways resulted in a decline of ROS production and a decrease in the number and the size of granulomas. In total, the results indicate that the Keap1/Nrf2/ARE system can be an effective pharmacological target in host-adjunctive treatment of tuberculosis.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Inflamação/tratamento farmacológico , Fenol/uso terapêutico , Tuberculose/tratamento farmacológico , Administração Oral , Animais , Anti-Infecciosos Locais/farmacologia , Masculino , Camundongos , Fenol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA