Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(1): 100702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122900

RESUMO

Estrogen receptor α (ERα) drives the transcription of genes involved in breast cancer (BC) progression, relying on coregulatory protein recruitment for its transcriptional and biological activities. Mutation of ERα as well as aberrant recruitment of its regulatory proteins contribute to tumor adaptation and drug resistance. Therefore, understanding the dynamic changes in ERα protein interaction networks is crucial for elucidating drug resistance mechanisms in BC. Despite progress in studying ERα-associated proteins, capturing subcellular transient interactions remains challenging and, as a result, significant number of important interactions remain undiscovered. In this study, we employed biotinylation by antibody recognition (BAR), an innovative antibody-based proximity labeling (PL) approach, coupled with mass spectrometry to investigate the ERα proximal proteome and its changes associated with resistance to aromatase inhibition, a key therapy used in the treatment of ERα-positive BC. We show that BAR successfully detected most of the known ERα interactors and mainly identified nuclear proteins, using either an epitope tag or endogenous antibody to target ERα. We further describe the ERα proximal proteome rewiring associated with resistance applying BAR to a panel of isogenic cell lines modeling tumor adaptation in the clinic. Interestingly, we find that ERα associates with some of the canonical cofactors in resistant cells and several proximal proteome changes are due to increased expression of ERα. Resistant models also show decreased levels of estrogen-regulated genes. Sensitive and resistant cells harboring a mutation in the ERα (Y537C) revealed a similar proximal proteome. We provide an ERα proximal protein network covering several novel ERα-proximal partners. These include proteins involved in highly dynamic processes such as sumoylation and ubiquitination difficult to detect with traditional protein interaction approaches. Overall, we present BAR as an effective approach to investigate the ERα proximal proteome in a spatial context and demonstrate its application in different experimental conditions.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico
2.
Sci Rep ; 8(1): 3850, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497062

RESUMO

Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we find that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3' flap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , RNA Helicases/fisiologia , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Instabilidade Genômica , Humanos , Enzimas Multifuncionais , RNA , RNA Helicases/metabolismo , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA