Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 1): 155800, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35550902

RESUMO

Environmental pollution is one of the major drivers of the present-day decline in global biodiversity. However, the links between the effects of industrial pollution on insect communities and the underlying species-specific responses remain poorly understood. We explored the spatial pattern in insect communities by analysing 581 samples of moths and butterflies (containing 25,628 individuals of 345 species) collected along a strong pollution gradient in subarctic Russia, and we recorded temporal changes in these communities during the pollution decline that occurred from 1992 to 2006. In the 1990s, the diversity of the Lepidoptera community was positively correlated with the distance from the copper-nickel smelter at Monchegorsk. The overall abundance of Lepidoptera did not change along the pollution gradient, although the abundance of many species decreased with increasing pollution. The responses of each individual species to pollution were associated with its life history traits. The abundances of monophagous species that fed inside live plant tissues and hibernated as imagoes or pupae were not affected by pollution, whereas the abundances of oligophagous and polyphagous species that fed externally on plants and hibernated as larvae generally declined near the smelter. Substantial decreases in aerial emissions from the smelter between 1992 and 2006 resulted in an increase in the diversity of moths and butterflies in severely polluted habitats, whereas their overall abundance did not change. This recovery of the Lepidoptera community occurred due to the reappearance of rare species that had been previously extirpated by pollution and was observed despite the lack of any signs of recovery of the vegetation in the heavily polluted sites. We conclude that the recovery trajectories of insect communities following emission control can be predicted from studies of their changes along spatial pollution gradients by using space-for-time substitution.


Assuntos
Borboletas , Mariposas , Animais , Biodiversidade , Ecossistema , Poluição Ambiental , Insetos/fisiologia , Mariposas/fisiologia
2.
Environ Sci Pollut Res Int ; 29(32): 48880-48892, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35199271

RESUMO

Long-term exposure to primary air pollutants, such as sulphur dioxide (SO2) and nitrogen oxides (NOx), alters the structure and functions of forest ecosystems. Many biochemical and biogeochemical processes discriminate against the heavier isotopes in a mixture; thus, the values of δ13C and δ15N (i.e. the ratio of stable isotopes 13C to 12C and that of 15 N to 14 N, respectively) may give insights into changes in ecosystem processes and identify the immediate drivers of these changes. We studied sources of variation in the δ13C and δ15N values in the foliage of eight boreal forest C3 plants at 10 sites located at the distance of 1-40 km from the Monchegorsk nickel-copper smelter in Russia. From 1939‒2019, this smelter emitted over 14,000,000 metric tons (t) of SO2, 250,000 t of metals, primarily nickel and copper, and 140,000 t of NOx. The δ13C value in evergreen plants and the δ15N value in all plants increased near the smelter independently of the plant mycorrhizal type. We attribute the pollution-related increase in the foliar δ13C values of evergreen species mainly to direct effects of SO2 on stomatal conductance, in combination with pollution-related water stress, which jointly override the potential opposite effect of increasing ambient CO2 concentration on δ13C values. Stomatal uptake of NOx and root uptake of 15N-enriched organic N compounds and NH4+ may explain the increased foliar δ15N values and elevated foliar N concentrations, especially in the evergreen trees (Pinus sylvestris), close to Monchegorsk, where the soil inorganic N supply is reduced due to the impact of long-term SO2 and heavy metal emissions on plant biomass. We conclude that, despite the uncertainties in interpreting δ13C and δ15N responses to pollution, the Monchegorsk smelter has imposed and still imposes a great impact on C and N cycling in the surrounding N-limited subarctic forest ecosystems.


Assuntos
Metais Pesados , Taiga , Carbono , Cobre , Ecossistema , Monitoramento Ambiental , Isótopos , Níquel , Nitrogênio/análise , Plantas/química
3.
Sci Total Environ ; 640-641: 678-687, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870944

RESUMO

Fluctuating asymmetry (FA), which is defined as the magnitude of the random deviations from a symmetrical shape, reflects developmental instability and is commonly assumed to increase under environmental and genetic stress. We monitored the leaf FA of mountain birch, Betula pubescens subsp. czerepanovii, from 1993 to 2017 in individually marked trees at 21 sites around the copper­nickel smelter at Monchegorsk, and we then analysed the results with respect to spatial and temporal variation in pollution, climate and background insect herbivory. Responses of leaf FA to different stressors were stressor specific: FA did not correlate with pollution load, it decreased significantly with an increase in June air temperature and it increased slightly but significantly with an increase in the previous-year leaf damage due to defoliating and leafmining insects. Our findings suggest that climate warming is unlikely to impose stress on the explored mountain birch populations, but even small increases in insect herbivory may adversely affect birch trees. However, these conclusions, since they are based on an observational study, should be viewed as tentative until confirmed by controlled experiments. We also demonstrated that the use of non-blinded measurements, which are prone to confirmation bias, was the primary reason for the earlier report of an increase in birch leaf FA near the Monchegorsk smelter. We hope that our findings will promote a wide use of blinded methods in ecological research and that they will contribute to debunking the myth that plant leaf FA consistently increases with increases in environmental pollution.


Assuntos
Betula/fisiologia , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Herbivoria , Metalurgia , Folhas de Planta , Temperatura , Animais , Cobre , Níquel , Federação Russa
4.
PLoS One ; 11(11): e0166641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27835702

RESUMO

Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008-2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit.


Assuntos
Betula/parasitologia , Infestações por Ácaros/parasitologia , Ácaros/fisiologia , Tumores de Planta/parasitologia , Distribuição Animal/fisiologia , Animais , Betula/classificação , Europa (Continente) , Herbivoria/fisiologia , Dispersão Vegetal/fisiologia , Folhas de Planta/parasitologia , Temperatura , Árvores
5.
Environ Pollut ; 135(1): 91-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15701396

RESUMO

Concentrations of nickel and copper, two principal metal pollutants of the 'Severonikel' smelter at Monchegorsk, NW Russia, were measured in unwashed leaves of mountain birch, Betula pubescens subsp. czerepanovii, collected in eight study sites along the pollution gradient during 1991-2003. In spite of significant decline in metal emissions, concentrations of foliar metals in most of the study sites did not decrease, indicating that soil contamination remains extremely high. Multiyear mean values peaked at 6.6 km S of the smelter, where they were 20-25 times higher than in the most distant study site. Concentrations of both metals demonstrated pronounced annual variation, which was explained by the meteorological conditions of early summer: higher precipitation in May increased foliar concentrations of both metals, whereas higher precipitation in June resulted in lower foliar concentrations of nickel. These data suggest that ecotoxicological situation in metal-contaminated areas can be modified by the expected climate change. In heavily polluted sites individual birch trees generally retained their ranks in terms of metal contamination during 1995-2003, demonstrating that the use of the same set of trees can significantly increase the accuracy of the monitoring data.


Assuntos
Poluentes Ocupacionais do Ar/análise , Cobre/análise , Metalurgia , Níquel/análise , Poluentes do Solo/análise , Árvores , Ecossistema , Monitoramento Ambiental/métodos , Folhas de Planta/química , Federação Russa , Tempo (Meteorologia)
6.
Chemosphere ; 59(2): 189-97, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15722090

RESUMO

Mountain birch, Betula pubescens subsp. czerepanovii (Orlova) Hamet-Ahti, is one of the very few woody plants surviving in the heavily polluted industrial barrens of the Kola Peninsula, north-western Russia. The present study was designed to find out whether long-lasting pollution impact caused selection of resistant birch genotypes, and to investigate possible trade-offs between pollution resistance and performance by exploring growth of birch seedlings in the different environments. In the reciprocal planting experiments, progenies of birches from polluted sites performed slightly better in the polluted environment (in terms of survival, leaf number, and leaf size) than progenies of birches from clean sites; and vice versa, in the clean environment progenies of birches from polluted sites performed slightly worse than progenies of birches from clean sites. However, this pattern was detected only in some of statistical tests, while the majority of comparisons showed no genotype or genotype by environment effects. Although some of the results indicate that long-lasting pollution impact may have increased pollution resistance of the affected populations by elimination of sensitive genotypes (survival selection), this conclusion should be considered tentative. The resistance did not reach the level sufficient to assure re-colonisation of polluted habitats: progenies of all trees completely died on the contaminated soils by the end of the first growth season. Therefore persistence of mountain birch populations near the strong polluters may be transient, being explained not only by higher resistance of the survivors, but also by phenotypic acclimatisation of mature trees to gradual increase in pollution.


Assuntos
Adaptação Fisiológica , Betula/fisiologia , Exposição Ambiental , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Fenótipo , Aclimatação/fisiologia , Betula/efeitos dos fármacos , Betula/crescimento & desenvolvimento , Genótipo , Metalurgia , Federação Russa , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA