Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400159, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700478

RESUMO

Enniatins are mycotoxins with well-known antibacterial, antifungal, antihelmintic and antiviral activity, which have recently come to attention as potential mitochondriotoxic anticancer agents. The cytotoxicity of enniatins is traced back to ionophoric properties, in which the cyclodepsipeptidic structure results in enniatin:cation-complexes of various stoichiometries proposed as membrane-active species. In this work, we employed a combination of surface-enhanced infrared absorption (SEIRA) spectroscopy, tethered bilayer lipid membranes (tBLMs) and density functional theory (DFT)-based computational spectroscopy to monitor the cation-dependence (Mz+=Na+, K+, Cs+, Li+, Mg2+, Ca2+) on the mechanism of enniatin B (EB) incorporation into membranes and identify the functionally relevant EBn : Mz+ complexes formed. We find that Na+ promotes a cooperative incorporation, modelled via an autocatalytic mechanism and mediated by a distorted 2 : 1-EB2 : Na+ complex. K+ (and Cs+) leads to a direct but less efficient insertion into membranes due to the adoption of "ideal" EB2 : K+ sandwich complexes. In contrast, the presence of Li+, Mg2+, and Ca2+ causes a (partial) extraction of EB from the membrane via the formation of "belted" 1 : 1-EB : Mz+ complexes, which screen the cationic charge less efficiently. Our results point to a relevance of the cation dependence for the transport into the malignant cells where the mitochondriotoxic anticancer activity is exerted.

2.
Front Mol Biosci ; 9: 826990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281268

RESUMO

Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.

3.
ACS Chem Biol ; 15(5): 1148-1153, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32175720

RESUMO

A biophysical understanding of the mechanistic, chemical, and physical origins underlying antibiotic action and resistance is vital to the discovery of novel therapeutics and the development of strategies to combat the growing emergence of antibiotic resistance. The site-specific introduction of stable-isotope labels into chemically complex natural products is particularly important for techniques such as NMR, IR, mass spectrometry, imaging, and kinetic isotope effects. Toward this goal, we developed a biosynthetic strategy for the site-specific incorporation of 13C labels into the canonical ß-lactam carbonyl of penicillin G and cefotaxime, the latter via cephalosporin C. This was achieved through sulfur-replacement with 1-13C-l-cysteine, resulting in high isotope incorporations and milligram-scale yields. Using 13C NMR and isotope-edited IR difference spectroscopy, we illustrate how these molecules can be used to interrogate interactions with their protein targets, e.g., TEM-1 ß-lactamase. This method provides a feasible route to isotopically labeled penicillin and cephalosporin precursors for future biophysical studies.


Assuntos
Antibacterianos/metabolismo , Isótopos de Carbono/química , beta-Lactamas/metabolismo , Antibacterianos/química , Sítios de Ligação , Cefotaxima/química , Cefotaxima/metabolismo , Cefalosporinas/metabolismo , Descoberta de Drogas , Resistência Microbiana a Medicamentos , Penicilina G/química , Penicilina G/metabolismo , Penicillium/metabolismo , Conformação Proteica , beta-Lactamases/metabolismo , beta-Lactamas/química
4.
Inorg Chem ; 58(2): 1216-1223, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30614697

RESUMO

The RuIII-based prodrug AziRu efficiently binds to proteins, but the mechanism of its release is still disputed. Herein, in order to test the hypothesis of a reduction-mediated Ru release from proteins, a Raman-assisted crystallographic study on AziRu binding to a model protein (hen egg white lysozyme), in two different oxidation states, RuII and RuIII, was carried out. Our results indicate Ru reduction, but the Ru release upon reduction is dependent on the reducing agent. To better understand this process, a pH-dependent, spectroelectrochemical surface-enhanced Raman scattering (SERS) study was performed also on AziRu-functionalized Au electrodes as a surrogate and simplest model system of RuII- and RuIII-based drugs. This SERS study provided a p Ka of 6.0 ± 0.4 for aquated AziRu in the RuIII state, which falls in the watershed range of pH values separating most cancer environments from their physiological counterparts. These experiments also indicate a dramatic shift of the redox potential E0 by >600 mV of aquated AziRu toward more positive potentials upon acidification, suggesting a selective AziRu reduction in cancer lumen but not in healthy ones. It is expected that the nature of the ligands (e.g., pyridine vs imidazole, present in well-known RuIII complex NAMI-A) will modulate the p Ka and E0, without affecting the underlying reaction mechanism.


Assuntos
Muramidase/química , Pró-Fármacos/química , Rutênio/química , Sítios de Ligação , Concentração de Íons de Hidrogênio , Estrutura Molecular , Muramidase/metabolismo , Pró-Fármacos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA