Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Physiol ; 15: 1305171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745836

RESUMO

Introduction: Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results: After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (∼6 min), lower extremity volume assessed by DXA-scan revealed a ∼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased ∼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion: Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.

2.
JACC Heart Fail ; 12(4): 740-753, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37999665

RESUMO

BACKGROUND: Genetic variants in titin (TTN) are associated with dilated cardiomyopathy (DCM) and skeletal myopathy. However, the skeletal muscle phenotype in individuals carrying heterozygous truncating TTN variants (TTNtv), the leading cause of DCM, is understudied. OBJECTIVES: This study aimed to assess the skeletal muscle phenotype associated with TTNtv. METHODS: Participants with TTNtv were included in a cross-sectional study. Skeletal muscle fat fraction was evaluated by magnetic resonance imaging (compared with healthy controls and controls with non-TTNtv DCM). Muscle strength was evaluated by dynamometry and muscle biopsy specimens were analyzed. RESULTS: Twenty-five TTNtv participants (11 women, mean age 51 ± 15 years, left ventricular ejection fraction 45% ± 10%) were included (19 had DCM). Compared to healthy controls (n = 25), fat fraction was higher in calf (12.5% vs 9.9%, P = 0.013), thigh (12.2% vs 9.3%, P = 0.004), and paraspinal muscles (18.8% vs 13.9%, P = 0.008) of TTNtv participants. Linear mixed effects modelling found higher fat fractions in TTNtv participants compared to healthy controls (2.5%; 95% CI: 1.4-3.7; P < 0.001) and controls with non-TTNtv genetic DCM (n = 7) (1.5%; 95% CI: 0.2-2.8; P = 0.025). Muscle strength was within 1 SD of normal values. Biopsy specimens from 21 participants found myopathic features in 13 (62%), including central nuclei. Electron microscopy showed well-ordered Z-lines and T-tubuli but uneven and discontinuous M-lines and excessive glycogen depositions flanked by autophagosomes, lysosomes, and abnormal mitochondria with mitophagy. CONCLUSIONS: Mild skeletal muscle involvement was prevalent in patients with TTNtv. The phenotype was characterized by an increased muscle fat fraction and excessive accumulation of glycogen, possibly due to reduced autophagic flux. These findings indicate an impact of TTNtv beyond the heart.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Conectina/genética , Estudos Transversais , Glicogênio , Insuficiência Cardíaca/genética , Músculo Esquelético/diagnóstico por imagem , Volume Sistólico , Função Ventricular Esquerda
3.
J Neuroimmunol ; 384: 578215, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797472

RESUMO

We investigated the humoral response to the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine in patients with myasthenia gravis on or off immunosuppressants and compared this to the response in healthy individuals. The SARS-CoV-2 IgG response and neutralizing capacity were measured in 83 patients (57 on immunosuppressants) and 332 healthy controls at baseline, three weeks, and two and six months after the vaccine. We found that the proportion of positive humoral response was lower in patients on immunosuppressants vs. controls at three weeks and two months (p ≤ 0.001), but not at six months post-vaccination (p = 0.379).


Assuntos
COVID-19 , Miastenia Gravis , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , Imunidade Humoral , SARS-CoV-2 , Anticorpos Antivirais , Imunossupressores/uso terapêutico , Vacinação
4.
JIMD Rep ; 63(6): 540-545, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36341176

RESUMO

Deficiency of the enzyme ß-galactosidase due to variants in the GLB1-gene is associated with metabolic disorders: Morquio B and GM1-gangliosidosis. Here, we report a case compound heterozygous for variants in the GLB1-gene and a severe muscular phenotype. Full body T1-w MRI was conducted for muscular involvement. Biopsy was stained with hematoxylin and eosin for histopathological evaluation. EDTA blood-sample was subjected to whole exome sequencing. Metabolic analysis included residual enzyme activity and evaluation urinary substrate secretion. Additionally, electroneurography, echocardiography, forced volume capacity and biochemistry were evaluated. Examination showed severe proximal weakness (MRC: hip flexion 2, hip extension 2, and shoulder rotation 2), Gower's sign, no extrapyramidal symptoms and normal creatine kinase levels. MRI showed severe muscle wasting of the thigh and shoulder girdle. Muscle biopsy showed mild myopathic changes. ß-galactosidase activity was reduced to 28%-34%. Urinary glycosaminoglycan was elevated by 5.9-8.6 mg/mmol (ref.:0-5.1 mg/mmol). Electrophoresis indicated excess keratan sulfate. Exome sequencing revealed two missense variants in the GLB1 gene. Clinical features, genetic testing and laboratory findings indicate a case of ß-galactosidase-deficiency with a muscular phenotype.

5.
Biomedicines ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35203514

RESUMO

Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.

6.
Cerebellum ; 21(3): 514-519, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34318393

RESUMO

Pathogenic variants in the SYNE1 gene are associated with a phenotypic spectrum spanning from late-onset, slowly progressive, relatively pure ataxia to early-onset, fast progressive multisystemic disease. Since its first description in 2007 as an adult-onset ataxia in French Canadian families, subsequent identification of patients worldwide has widened the clinical spectrum and increased the number of identified pathogenic variants. We report a 20-year-old Faroese female with early-onset progressive gait problems, weakness, dysphagia, slurred speech, orthostatic dizziness, and urge incontinence. Neurological examination revealed mild cognitive deficits, dysarthria, broken slow pursuit, hypometric saccades, weakness with spasticity, hyperreflexia, absent ankle reflexes, ataxia, and wide-based, spastic gait. Magnetic resonance imaging displayed atrophy of the cerebellum, brainstem, and spinal cord. Severely prolonged central motor conduction time and lower motor neuron involvement was demonstrated electrophysiologically. Fluorodeoxyglucose-positron emission tomography (FDG-PET) scan showed hypometabolism of the cerebellum and right frontal lobe. Muscle biopsy revealed chronic neurogenic changes and near-absent immunostaining for Nesprin-1. Next-generation sequencing revealed a previously undescribed homozygous truncating, likely pathogenic variant in the SYNE1 gene. The patient's mother and paternal grandfather were heterozygous carriers of the variant. Her father's genotype was unobtainable. We expand the list of likely pathogenic variants in SYNE1 ataxia with a novel homozygous truncating variant with proximity to the C-terminus and relate it to a phenotype comprising early-onset cerebellar deficits, upper and lower motor neuron involvement and cognitive deficits. Also, we report novel findings of focally reduced frontal lobe FDG-PET uptake and motor evoked potential abnormalities suggestive of central demyelination.


Assuntos
Ataxia Cerebelar , Proteínas do Citoesqueleto , Canadá , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Proteínas do Citoesqueleto/genética , Feminino , Fluordesoxiglucose F18 , Humanos , Espasticidade Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Adulto Jovem
7.
Muscle Nerve ; 64(6): 743-748, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550615

RESUMO

INTRODUCTION/AIMS: Mutations in the anoctamin 5 (ANO5) gene are a common cause of muscular dystrophy. We aimed to investigate whether inflammatory changes in muscle are present in patients with ANO5 myopathy when assessed by muscle biopsy and muscle magnetic resonance imaging (MRI). METHODS: Adults with pathogenic variations in ANO5 known to cause muscular dystrophy were included in our study. Muscle biopsies of pelvic and lower extremity muscles were reviewed retrospectively. Muscle MR short-tau inversion recovery (STIR) images of a subset of these patients were obtained prospectively. RESULTS: Muscle biopsies from 24 patients were reviewed. MR STIR images were performed in 17 of these patients. We found inflammatory changes in muscle biopsies of three patients and MRI revealed hyperintense signals on STIR images in 14 of 17 patients. DISCUSSION: In this study, we found that muscle edema is very common in patients with ANO5 myopathy and that some patients have inflammatory changes in muscle biopsies. Further studies are needed to determine whether the STIR+ lesions reflect inflammation.


Assuntos
Anoctaminas , Doenças Musculares , Adulto , Anoctaminas/genética , Biópsia , Humanos , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculos , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Estudos Retrospectivos
8.
Neuromuscul Disord ; 30(9): 734-741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32811700

RESUMO

McArdle disease results from a lack of muscle glycogen phosphorylase in skeletal muscle tissue. Regenerating skeletal muscle fibres can express the brain glycogen phosphorylase isoenzyme. Stimulating expression of this enzyme could be a therapeutic strategy. Animal model studies indicate that sodium valproate (VPA) can increase expression of phosphorylase in skeletal muscle affected with McArdle disease. This study was designed to assess whether VPA can modify expression of brain phosphorylase isoenzyme in people with McArdle disease. This phase II, open label, feasibility pilot study to assess efficacy of six months treatment with VPA (20 mg/kg/day) included 16 people with McArdle disease. Primary outcome assessed changes in VO2peak during an incremental cycle test. Secondary outcomes included: phosphorylase enzyme expression in post-treatment muscle biopsy, total distance walked in 12 min, plasma lactate change (forearm exercise test) and quality of life (SF36). Safety parameters. 14 participants completed the trial, VPA treatment was well tolerated; weight gain was the most frequently reported drug-related adverse event. There was no clinically meaningful change in any of the primary or secondary outcome measures including: VO2peak, 12 min walk test and muscle biopsy to look for a change in the number of phosphorylase positive fibres between baseline and 6 months of treatment. Although this was a small open label feasibility study, it suggests that a larger randomised controlled study of VPA, may not be worthwhile.


Assuntos
Encéfalo/patologia , Glicogênio Fosforilase/metabolismo , Músculo Esquelético/citologia , Ácido Valproico/uso terapêutico , Animais , Estudos de Viabilidade , Glicogênio Fosforilase/farmacologia , Humanos , Fibras Musculares Esqueléticas/patologia , Fosforilases/metabolismo , Projetos Piloto , Qualidade de Vida
9.
Front Neurol ; 11: 541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655483

RESUMO

Activation of skeletal muscle contractions require that action potentials can be excited and propagated along the muscle fibers. Recent studies have revealed that muscle fiber excitability is regulated during repeated firing of action potentials by cellular signaling systems that control the function of ion channel that determine the resting membrane conductance (G m ). In fast-twitch muscle, prolonged firing of action potentials triggers a marked increase in G m , reducing muscle fiber excitability and causing action potential failure. Both ClC-1 and KATP ion channels contribute to this G m rise, but the exact molecular regulation underlying their activation remains unclear. Studies in expression systems have revealed that ClC-1 is able to bind adenosine nucleotides, and that low adenosine nucleotide levels result in ClC-1 activation. In three series of experiments, this study aimed to explore whether ClC-1 is also regulated by adenosine nucleotides in native skeletal muscle fibers, and whether the adenosine nucleotide sensitivity of ClC-1 could explain the rise in G m muscle fibers during prolonged action potential firing. First, whole cell patch clamping of mouse muscle fibers demonstrated that ClC-1 activation shifted in the hyperpolarized direction when clamping pipette solution contained 0 mM ATP compared with 5 mM ATP. Second, three-electrode G m measurement during muscle fiber stimulation showed that glycolysis inhibition, with 2-deoxy-glucose or iodoacetate, resulted in an accelerated and rapid >400% G m rise during short periods of repeated action potential firing in both fast-twitch and slow-twitch rat, and in human muscle fibers. Moreover, ClC-1 inhibition with 9-anthracenecarboxylic acid resulted in either an absence or blunted G m rise during action potential firing in human muscle fibers. Third, G m measurement during repeated action potential firing in muscle fibers from a murine McArdle disease model suggest that the rise in G m was accelerated in a subset of fibers. Together, these results are compatible with ClC-1 function being regulated by the level of adenosine nucleotides in native tissue, and that the channel operates as a sensor of skeletal muscle metabolic state, limiting muscle excitability when energy status is low.

10.
J Clin Med ; 9(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664402

RESUMO

Aging is related to an inevitable loss of muscle mass and strength. The mechanisms behind age-related loss of muscle tissue are not fully understood but may, among other things, be induced by age-related differences in myogenic regulatory factors. Resistance exercise training and deconditioning offers a model to investigate differences in myogenic regulatory factors that may be important for age-related loss of muscle mass and strength. Nine elderly (82 ± 7 years old) and nine young, healthy persons (22 ± 2 years old) participated in the study. Exercise consisted of six weeks of resistance training of the quadriceps muscle followed by eight weeks of deconditioning. Muscle biopsy samples before and after training and during the deconditioning period were analyzed for MyoD, myogenin, insulin-like growth-factor I receptor, activin receptor IIB, smad2, porin, and citrate synthase. Muscle strength improved with resistance training by 78% (95.0 ± 22.0 kg) in the elderly to a similar extent as in the young participants (83.5%; 178.2 ± 44.2 kg) and returned to baseline in both groups after eight weeks of deconditioning. No difference was seen in expression of muscle regulatory factors between elderly and young in response to exercise training and deconditioning. In conclusion, the capacity to gain muscle strength with resistance exercise training in elderly was not impaired, highlighting this as a potent tool to combat age-related loss of muscle function, possibly due to preserved regulation of myogenic factors in elderly compared with young muscle.

11.
Hum Mutat ; 41(9): 1507-1513, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557990

RESUMO

Recessively inherited limb girdle muscular dystrophy (LGMD) type 2A is the most common LGMD worldwide. Here, we report the first single missense variant in CAPN3 causing dominantly inherited calpainopathy. A 43-year-old proband, his father and two sons were heterozygous for a c.1715G>C p.(Arg572Pro) variant in CAPN3. Affected family members had at least three of the following; muscle pain, a LGMD2A pattern of muscle weakness and wasting, muscle fat replacement on magnetic resonance imaging, myopathic muscle biopsy, and elevated creatine kinase. Total calpain 3 protein expression was 4 ± 3% of normal. In vitro analysis of c.1715G>C and the previously described c.643_663del variant indicated that the mutant proteins lack autolytic and proteolytic activity and decrease the quantity of wild-type CAPN3 protein. Our findings suggest that dominantly inherited calpainopathy is not unique to the previously reported c.643_663del mutation of CAPN3, and that dominantly inherited calpainopathy should be considered for other single variations in CAPN3.


Assuntos
Calpaína/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Adolescente , Adulto , Idoso , Criança , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
12.
BMC Neurol ; 19(1): 247, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640597

RESUMO

BACKGROUND: Palbociclib is a selective well-tolerated antineoplastic drug used in the treatment of advanced HER2-negative, estrogen-receptor positive breast cancer that has shown significant improvement in progression-free survival. We present a patient that developed severe rhabdomyolysis with tetra-affection and loss of gait after initiating the first cycle of Palbociclib concomitantly with Simvastatin 40 mg treatment. CASE PRESENTATION: A 71-year-old woman with metastatic breast cancer developed tetraparesis and near fatal rhabdomyolysis after initiation of first cycle Palbociclib. For 10 years prior to this treatment, the patient had been treated with Simvastatin without myalgia or other neuromuscular complaints prior to the first cycle of Palbociclib. The patient was admitted at the neurology department, where Palbociclib and Simvastatin were discontinued. The patient was aggressively hydrated and treated with intravenous immunoglobulin therapy with slowly remission and finally regaining independent gait function. Evaluation showed a negative myositis antibody work-up. Muscle magnetic resonance imaging showed edema in multiple foci, but skeletal muscle biopsy did not show necrosis. Post discharge genetic analysis showed single heterozygosity for nucleotide polymorphism rs4149056. CONCLUSION: We present a patient who developed severe rhabdomyolysis induced by a combination of Palbociclib and Simvastatin treatment. Rhabdomyolysis was most likely induced by toxic plasma concentrations of Simvastatin due to Palbociclibs inhibition of the CYP3A4 enzyme in combination with a decreased hepatic uptake of Simvastatin due to single nucleotide polymorphism rs4149056. The study underscores that combining Simvastatin and Palbociclib should be done cautiously and genetic testing of the rs4149056 SNP is warranted. If present, Simvastatin should be discontinued or replaced with a lesser myopathic statin in regard to patients risk of cardiovascular events.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Piperazinas/efeitos adversos , Piridinas/efeitos adversos , Rabdomiólise/induzido quimicamente , Sinvastatina/efeitos adversos , Idoso , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos
13.
Acta Neuropathol Commun ; 7(1): 167, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661040

RESUMO

Glycogen storage disorder type III (GSDIII), or debranching enzyme (GDE) deficiency, is a rare metabolic disorder characterized by variable liver, cardiac, and skeletal muscle involvement. GSDIII manifests with liver symptoms in infancy and muscle involvement during early adulthood. Muscle biopsy is mainly performed in patients diagnosed in adulthood, as routine diagnosis relies on blood or liver GDE analysis, followed by AGL gene sequencing. The GSDIII mouse model recapitulate the clinical phenotype in humans, and a nearly full rescue of muscle function was observed in mice treated with the dual AAV vector expressing the GDE transgene.In order to characterize GSDIII muscle morphological spectrum and identify novel disease markers and pathways, we performed a large international multicentric morphological study on 30 muscle biopsies from GSDIII patients. Autophagy flux studies were performed in human muscle biopsies and muscles from GSDIII mice. The human muscle biopsies revealed a typical and constant vacuolar myopathy, characterized by multiple and variably sized vacuoles filled with PAS-positive material. Using electron microscopy, we confirmed the presence of large non-membrane bound sarcoplasmic deposits of normally structured glycogen as well as smaller rounded sac structures lined by a continuous double membrane containing only glycogen, corresponding to autophagosomes. A consistent SQSTM1/p62 decrease and beclin-1 increase in human muscle biopsies suggested an enhanced autophagy. Consistent with this, an increase in the lipidated form of LC3, LC3II was found in patients compared to controls. A decrease in SQSTM1/p62 was also found in the GSDIII mouse model.In conclusion, we characterized the morphological phenotype in GSDIII muscle and demonstrated dysfunctional autophagy in GSDIII human samples.These findings suggest that autophagic modulation combined with gene therapy might be considered as a novel treatment for GSDIII.


Assuntos
Autofagia , Doença de Depósito de Glicogênio Tipo III/patologia , Músculo Esquelético/patologia , Vacúolos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/ultraestrutura
14.
Ann Neurol ; 86(6): 832-843, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31610034

RESUMO

OBJECTIVE: The Popeye domain containing 3 (POPDC3) gene encodes a membrane protein involved in cyclic adenosine monophosphate (cAMP) signaling. Besides gastric cancer, no disease association has been described. We describe a new muscular dystrophy associated with this gene. METHODS: We screened 1,500 patients with unclassified limb girdle weakness or hyperCKemia for pathogenic POPDC3 variants. Five patients carrying POPDC3 variants were examined by muscle magnetic resonance imaging (MRI), muscle biopsy, and cardiac examination. We performed functional analyses in a zebrafish popdc3 knockdown model and heterologous expression of the mutant proteins in Xenopus laevis oocytes to measure TREK-1 current. RESULTS: We identified homozygous POPDC3 missense variants (p.Leu155His, p.Leu217Phe, and p.Arg261Gln) in 5 patients from 3 ethnically distinct families. Variants affected highly conserved residues in the Popeye (p.Leu155 and p.Leu217) and carboxy-terminal (p.Arg261) domains. The variants were almost absent from control populations. Probands' muscle biopsies were dystrophic, and serum creatine kinase levels were 1,050 to 9,200U/l. Muscle weakness was proximal with adulthood onset in most patients and affected lower earlier than upper limbs. Muscle MRI revealed fat replacement of paraspinal and proximal leg muscles; cardiac investigations were unremarkable. Knockdown of popdc3 in zebrafish, using 2 different splice-site blocking morpholinos, resulted in larvae with tail curling and dystrophic muscle features. All 3 mutants cloned in Xenopus oocytes caused an aberrant modulation of the mechano-gated potassium channel, TREK-1. INTERPRETATION: Our findings point to an important role of POPDC3 for skeletal muscle function and suggest that pathogenic variants in POPDC3 are responsible for a novel type of autosomal recessive limb girdle muscular dystrophy. ANN NEUROL 2019;86:832-843.


Assuntos
Moléculas de Adesão Celular/genética , Variação Genética/genética , Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Adulto , Animais , Moléculas de Adesão Celular/química , Estudos de Coortes , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/química , Linhagem , Estrutura Secundária de Proteína , Xenopus laevis , Peixe-Zebra
15.
Am J Physiol Endocrinol Metab ; 316(5): E940-E947, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779630

RESUMO

IL-6 is secreted from muscles to the circulation during high-intensity and long-duration exercise, where muscle-derived IL-6 works as an energy sensor to increase release of energy substrates from liver and adipose tissues. We investigated the mechanism involved in the exercise-mediated surge in IL-6 during exercise. Using interval-based cycling in healthy young men, swimming exercise in mice, and electrical stimulation of primary human muscle cells, we explored the role of lactate production in muscular IL-6 release during exercise. First, we observed a tight correlation between lactate production and IL-6 release during both strenuous bicycling and electrically stimulated muscle cell cultures. In mice, intramuscular injection of lactate mimicked the exercise-dependent release of IL-6, and pH buffering of lactate production during exercise attenuated IL-6 secretion. Next, we used in vivo bioimaging to demonstrate that intrinsic intramuscular proteases were activated in mice during swimming, and that blockade of protease activity blunted swimming-induced IL-6 release in mice. Last, intramuscular injection of the protease hyaluronidase resulted in dramatic increases in serum IL-6 in mice, and immunohistochemical analyses showed that intramuscular lactate and hyaluronidase injections led to release of IL-6-containing intramyocellular vesicles. We identified a pool of IL-6 located within vesicles of skeletal muscle fibers, which could be readily secreted upon protease activity. This protease-dependent release of IL-6 was initiated by lactate production, linking training intensity and lactate production to IL-6 release during strenuous exercise.


Assuntos
Interleucina-6/metabolismo , Ácido Láctico/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Animais , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Estimulação Elétrica , Exercício Físico , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Ácido Láctico/farmacologia , Masculino , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Condicionamento Físico Animal , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
16.
Neuromuscul Disord ; 28(9): 798-801, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061062

RESUMO

Bag3opathy is a rare myofibrillar myopathy (MFM) caused by a mutation in the Bcl-2 associated-athanogene-3 gene. Less than twenty patients have been described, almost all with severe cardiac involvement. We present a 26-year-old man with a c.626C>T (p.Pro209Leu) mutation in the Bcl-2 associated-athanogene-3 gene (BAG3). Our patient presented with problems running before he turned 10 and rapidly progressing, proximal muscle weakness and rigidity of the neck and back. Muscle biopsy showed Z-disc streaming, vacuoles, which is typical findings of Bag3opathy, as well as accumulation of filamentous materials. He rapidly developed respiratory insufficiency necessitating assisted ventilation, and became wheelchair bound by age 13. The progression of his muscle disease is characteristic of Bag3opathy, but unlike other reported cases, he had no evidence of cardiac involvement at age 25 years, despite serial Holter monitoring, ECG and echocardiographs. This case illustrates that counseling of patients with BAG3 myopathy should not predict an inevitable occurrence of cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Debilidade Muscular/genética , Mutação , Miopatias Congênitas Estruturais/genética , Adulto , Cardiomiopatias/patologia , Humanos , Masculino , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia
17.
J Neurol Neurosurg Psychiatry ; 89(5): 506-512, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29175898

RESUMO

BACKGROUND: Mutations in the gene coding for protein O-mannosyl-transferase 2 (POMT2) are known to cause severe congenital muscular dystrophy, and recently, mutations in POMT2 have also been linked to a milder limb-girdle muscular dystrophy (LGMD) phenotype, named LGMD type 2N (LGMD2N). Only four cases have been reported so far.ClinicalTrials.gov ID: NCT02759302 METHODS: We report 12 new cases of LGMD2N, aged 18-63 years. Muscle involvement was assessed by MRI, muscle strength testing and muscle biopsy analysis. Other clinical features were also recorded. RESULTS: Presenting symptoms were difficulties in walking, pain during exercise, delayed motor milestones and learning disabilities at school. All had some degree of cognitive impairment. Brain MRIs were abnormal in 3 of 10 patients, showing ventricular enlargement in one, periventricular hyperintensities in another and frontal atrophy of the left hemisphere in a third patient. Most affected muscle groups were hip and knee flexors and extensors on strength testing. On MRI, most affected muscles were hamstrings followed by paraspinal and gluteal muscles. The 12 patients in our cohort carried 11 alleles with known mutations, whereas 11 novel mutations accounted for the remaining 13 alleles. CONCLUSION: We describe the first cohort of patients with LGMD2N and show that unlike other LGMD types, all patients had cognitive impairment. Primary muscle involvement was found in hamstring, paraspinal and gluteal muscles on MRI, which correlated well with reduced muscle strength in hip and knee flexors and extensors. The study expands the mutational spectrum for LGMD2N, with the description of 11 novel POMT2 mutations in the association with LGMD2N. CLINICAL TRIAL REGISTRATION: NCT02759302.


Assuntos
Predisposição Genética para Doença/genética , Manosiltransferases/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Adolescente , Adulto , Alelos , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/complicações , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Mutação , Neuroimagem , Adulto Jovem
18.
Mol Genet Metab ; 123(1): 21-27, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174367

RESUMO

BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8-week old McArdle and wild-type mice were exercised on a treadmill until exhausted. Dissected muscles were compared with non-exercised, age-matched McArdle and wild-type mice for histology and activation and expression of proteins involved in glucose uptake and glycogenolysis. RESULTS: Investigation of expression and activation of proteins involved in glycolytic flux revealed that in glycolytic, but not oxidative muscle from exercised McArdle mice, the glycolytic flux had changed compared to that in wild-type mice. Specifically, exercise triggered in glycolytic muscle a differentiated activation of insulin receptor, 5' adenosine monophosphate-activated protein kinase, Akt and hexokinase II expression, while inhibiting glycogen synthase, suggesting that the need and adapted ability to take up blood glucose and use it for metabolism or glycogen storage is different among the investigated muscles. CONCLUSION: The main finding of the study is that McArdle mouse muscles appear to adapt to the energy crisis by increasing expression and activation of proteins involved in blood glucose metabolism in response to exercise in the same directional way across the investigated muscles.


Assuntos
Doença de Depósito de Glicogênio Tipo V/terapia , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo V/metabolismo , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Humanos , Camundongos , Músculo Esquelético/fisiopatologia
19.
PLoS One ; 9(6): e100594, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963862

RESUMO

Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.


Assuntos
Fator de Crescimento de Hepatócito/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/uso terapêutico , Fator Inibidor de Leucemia/farmacologia , Masculino , Camundongos , Atrofia Muscular/metabolismo , Miostatina/deficiência , Tamanho do Órgão/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos
20.
Neuromuscul Disord ; 24(2): 162-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24161205

RESUMO

Most patients with mutations in the tRNA(lys) gene (MTTK) present with symptoms from the central nervous system (CNS). We describe a 41-year-old woman with pure myopathy associated with a novel de novo mtDNA mutation, mt.8340G>A, which was heteroplasmic in muscle (53%), blood, urine and mouth epithelial cells (<7%). No other family members, including her mother, carried the mutation. She presented with exercise intolerance from age 9, and since age 20 she experienced ptosis and reduced ocular motility. A muscle biopsy revealed ragged red fibres (10%), no COX negative fibres, and many fibres with central nuclei (30%), indicating ongoing damage and repair. The present case expands the mutational and phenotypic spectrum of diseases associated with mutations in MTTK.


Assuntos
DNA Mitocondrial/genética , Doenças Musculares/genética , Mutação Puntual , RNA de Transferência de Lisina/genética , Adulto , Sequência de Bases , Contaminação por DNA , Feminino , Humanos , Dados de Sequência Molecular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA