Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1308135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022761

RESUMO

We have recently shown that cancer cells of various origins take up extracellular citrate through the plasma membrane citrate carrier (pmCiC), a specific plasma membrane citrate transporter. Extracellular citrate is required to support cancer cell metabolism, in particular fatty acid synthesis, mitochondrial activity, protein synthesis and histone acetylation. In addition, cancer cells tend to acquire a metastatic phenotype in the presence of extracellular citrate. Our recent study also showed that cancer-associated stromal cells synthesise and release citrate and that this process is controlled by cancer cells. In the present study, we evaluated the expression of pmCiC, fibroblast activation protein-α (FAP) and the angiogenesis marker cluster of differentiation 31 (CD31) in human cancer tissues of different origins. In the cohort studied, we found no correlation between disease stage and the expression of FAP or CD31. However, we have identified a clear correlation between pmCiC expression in cancer cells and cancer-associated stroma with tumour stage. It can be concluded that pmCiC is increased in cancer cells and in cancer-supporting cells in the tumour microenvironment at the later stages of cancer development, particularly at the metastatic sites. Therefore, pmCiC expression has the potential to serve as a prognostic marker, although further studies are needed.

2.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265145

RESUMO

The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.


Assuntos
Células Epiteliais , Proteínas de Membrana , Núcleosídeo-Fosfato Quinase , Proteínas de Junções Íntimas , Animais , Camundongos , Citoesqueleto de Actina , Actinas , Citoesqueleto , Citosol , Núcleosídeo-Fosfato Quinase/genética , Proteínas de Membrana/genética
3.
Cell Mol Life Sci ; 80(11): 333, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878054

RESUMO

The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.


Assuntos
Polaridade Celular , Junções Íntimas , Bioensaio , Regulação para Baixo , Histona Desacetilases/genética
4.
J Am Soc Nephrol ; 34(6): 1039-1055, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930055

RESUMO

SIGNIFICANCE STATEMENT: Nuclear exclusion of the cotranscription factor YAP, which is a consequence of activation of the Hippo signaling pathway, leads to FSGS and podocyte apoptosis. Ajuba proteins play an important role in the glomerular filtration barrier by keeping the Hippo pathway inactive. In nephrocytes from Drosophila melanogaster , a well-established model system for podocyte research, Ajuba proteins ensure slit diaphragm (SD) formation and function. Hippo pathway activation leads to mislocalization of Ajuba proteins, decreased SD formation, rearrangement of the actin cytoskeleton, and increased SD permeability. Targeting the kinases of the Hippo pathway with specific inhibitors in the glomerulus could, therefore, be a promising strategy for therapy of FSGS. BACKGROUND: The highly conserved Hippo pathway, which regulates organ growth and cell proliferation by inhibiting transcriptional cofactors YAP/TAZ, plays a special role in podocytes, where activation of the pathway leads to apoptosis. The Ajuba family proteins (Ajuba, LIM domain-containing protein 1 (LIMD1) and Wilms tumor protein 1-interacting protein [WTIP]) can bind and inactivate large tumor suppressor kinases 1 and 2, (LATS1/2) two of the Hippo pathway key kinases. WTIP, furthermore, connects the slit diaphragm (SD), the specialized cell-cell junction between podocytes, with the actin cytoskeleton. METHODS: We used garland cell nephrocytes of Drosophila melanogaster to monitor the role of Ajuba proteins in Hippo pathway regulation and structural integrity of the SD. Microscopy and functional assays analyzed the interplay between Ajuba proteins and LATS2 regarding expression, localization, interaction, and effects on the functionality of the SD. RESULTS: In nephrocytes, the Ajuba homolog Djub recruited Warts (LATS2 homolog) to the SD. Knockdown of Djub activated the Hippo pathway. Reciprocally, Hippo activation reduced the Djub level. Both Djub knockdown and Hippo activation led to morphological changes in the SD, rearrangement of the cortical actin cytoskeleton, and increased SD permeability. Knockdown of Warts or overexpression of constitutively active Yki prevented these effects. In podocytes, Hippo pathway activation or knockdown of YAP also decreased the level of Ajuba proteins. CONCLUSIONS: Ajuba proteins regulate the structure and function of the SD in nephrocytes, connecting the SD protein complex to the actin cytoskeleton and maintaining the Hippo pathway in an inactive state. Hippo pathway activation directly influencing Djub expression suggests a self-amplifying feedback mechanism.


Assuntos
Proteínas de Drosophila , Glomerulosclerose Segmentar e Focal , Verrugas , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Sinalização YAP , Junções Intercelulares , Proteínas de Drosophila/metabolismo
5.
Cancer Gene Ther ; 30(3): 497-506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36494580

RESUMO

Downregulation of cell-cell adhesion and increased motility are prerequisites for the metastasis of cancer cells. We have recently shown that downregulation of the tight junction adapter protein Pals1 in colorectal cancer cells results in an increase of cell migration, invasion, and metastasis due to the enhanced activation of Arf6 and Rac1. We now reveal a redundancy between the Arf6-GAP SMAP1 and Pals1 in regulating Arf6 activity and thereby Rac1-dependent cell migration. The gene encoding SMAP1 is frequently disrupted in microsatellite instable colorectal cancer specimen and cell lines. In cells expressing SMAP1, deletion of Pals1 leads to disturbed formation of tight junctions but has no impact on Arf6 activity and cell migration. In contrast, inactivation of both SMAP1 and Pals1 results in enhanced Arf6/Rac1 activity and increased cell migration and invasion. Furthermore, analyzing patient cohorts, we found a significant decrease in patient's survival when both genes were downregulated, in contrast to cases, when expression of only one of both genes was affected. Taken together, we identified a redundancy between SMAP1 and Pals1 in the regulation of activation of Arf6/Rac1, thereby controlling cell migration, invasion, and metastasis of colorectal cancer cells.


Assuntos
Fatores de Ribosilação do ADP , Neoplasias Colorretais , Humanos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Linhagem Celular , Movimento Celular/genética , Neoplasias Colorretais/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Liver Int ; 43(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478640

RESUMO

BACKGROUND AND AIMS: Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS: Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS: In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS: Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.


Assuntos
Cistos , Hepatopatias , Canais de Translocação SEC , Feminino , Humanos , Linhagem Celular , Cistos/genética , Hepatopatias/genética , Canais de Translocação SEC/genética
8.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205379

RESUMO

Talimogene laherparepvec (T-VEC), an oncolytic herpes simplex virus, is approved for intralesional injection of unresectable stage IIIB/IVM1a melanoma. However, it is still unclear which parameter(s) predict treatment response or failure. Our study aimed at characterizing surface receptors Nectin-1 and the herpes virus entry mediator (HVEM) in addition to intracellular molecules cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) as potential bio-markers for oncolytic virus treatment. In 20 melanoma cell lines, oncolytic activity of T-VEC was correlated with the expression of Nectin-1 but not HVEM, as evaluated via flow cytometry and immunohistochemistry. Knockout using CRISPR/Cas9 technology confirmed the superior role of Nectin-1 over HVEM for entry and oncolytic activity of T-VEC. Neither cGAS nor STING as evaluated by Western Blot and immunohistochemistry correlated with T-VEC induced oncolysis. The role of these biomarkers was retrospectively analyzed for the response of 35 cutaneous melanoma metastases of 21 patients to intralesional T-VEC injection, with 21 (60.0%) of these lesions responding with complete (n = 16) or partial regression (n = 5). Nectin-1 expression in pretreatment biopsies significantly predicted treatment outcome, while the expression of HVEM, cGAS, and STING was not prognostic. Altogether, Nectin-1 served as biomarker for T-VEC-induced melanoma regression in vitro and in vivo.

9.
Mol Cancer ; 20(1): 74, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33941200

RESUMO

Loss of apical-basal polarity and downregulation of cell-cell contacts is a critical step during the pathogenesis of cancer. Both processes are regulated by the scaffolding protein Pals1, however, it is unclear whether the expression of Pals1 is affected in cancer cells and whether Pals1 is implicated in the pathogenesis of the disease.Using mRNA expression data and immunostainings of cancer specimen, we show that Pals1 is frequently downregulated in colorectal cancer, correlating with poorer survival of patients. We further found that Pals1 prevents cancer cell metastasis by controlling Rac1-dependent cell migration through inhibition of Arf6, which is independent of the canonical binding partners of Pals1. Loss of Pals1 in colorectal cancer cells results in increased Arf6 and Rac1 activity, enhanced cell migration and invasion in vitro and increased metastasis of transplanted tumor cells in mice. Thus, our data reveal a new function of Pals1 as a key inhibitor of cell migration and metastasis of colorectal cancer cells. Notably, this new function is independent of the known role of Pals1 in tight junction formation and apical-basal polarity.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular/fisiologia , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/patologia
10.
Cell Death Dis ; 12(1): 117, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483469

RESUMO

The WW-and-C2-domain-containing (WWC) protein family is involved in the regulation of cell differentiation, cell proliferation, and organ growth control. As upstream components of the Hippo signaling pathway, WWC proteins activate the Large tumor suppressor (LATS) kinase that in turn phosphorylates Yes-associated protein (YAP) and its paralog Transcriptional coactivator-with-PDZ-binding motif (TAZ) preventing their nuclear import and transcriptional activity. Inhibition of WWC expression leads to downregulation of the Hippo pathway, increased expression of YAP/TAZ target genes and enhanced organ growth. In mice, a ubiquitous Wwc1 knockout (KO) induces a mild neurological phenotype with no impact on embryogenesis or organ growth. In contrast, we could show here that ubiquitous deletion of Wwc2 in mice leads to early embryonic lethality. Wwc2 KO embryos display growth retardation, a disturbed placenta development, impaired vascularization, and finally embryonic death. A whole-transcriptome analysis of embryos lacking Wwc2 revealed a massive deregulation of gene expression with impact on cell fate determination, cell metabolism, and angiogenesis. Consequently, a perinatal, endothelial-specific Wwc2 KO in mice led to disturbed vessel formation and vascular hypersprouting in the retina. In summary, our data elucidate a novel role for Wwc2 as a key regulator in early embryonic development and sprouting angiogenesis in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais
11.
Int J Cancer ; 146(11): 3170-3183, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626715

RESUMO

More than half of all brain metastases show infiltrating rather than displacing growth at the macro-metastasis/organ parenchyma interface (MMPI), a finding associated with shorter survival. The lymphoid enhancer-binding factor-1 (LEF1) is an epithelial-mesenchymal transition (EMT) transcription factor that is commonly overexpressed in brain-colonizing cancer cells. Here, we overexpressed LEF1 in an in vivo breast cancer brain colonization model. It shortened survival, albeit without engaging EMT at the MMPI. By differential proteome analysis, we identified a novel function of LEF1 as a regulator of the glutathione (GSH) system, the principal cellular redox buffer. LEF1 overexpression also conferred resistance against therapeutic GSH depletion during brain colonization and improved management of intracellular ROS. We conclude that besides EMT, LEF1 facilitates metastasis by improving the antioxidative capacity of epithelial breast cancer cells, in particular during colonization of the brain parenchyma.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Glutationa/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Tecido Parenquimatoso/patologia
12.
FASEB J ; 33(1): 821-832, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052485

RESUMO

Reactivation of Notch signaling in kidneys of animal models and patients with chronic kidney disease (CKD) has been shown to contribute to epithelial injury and fibrosis development. Here, we investigated the mechanisms of Notch-induced injury in renal epithelial cells. We performed genome-wide transcriptome analysis to identify Notch target genes using an in vitro system of cultured tubular epithelial cells expressing the intracellular domain of Notch1. One of the top downregulated genes was Disabled-2 ( Dab2). With the use of Drosophila nephrocytes as a model system, we found that Dab (the Drosophila homolog of Dab2) knockdown resulted in a significant filtration defect, indicating that loss of Dab2 plays a functional role in kidney disease development. We showed that Dab2 expression in cultured tubular epithelial cells is involved in endocytic regulation and that it also protects cells from TGF-ß-induced epithelial-to-mesenchymal transition. In vivo correlation studies indicated its additional role in renal ischemia-induced injury. Together, these data suggest that Dab2 plays a versatile role in the kidney and may impact on acute and CKDs.-Schütte-Nütgen, K., Edeling, M., Mendl, G., Krahn, M. P., Edemir, B., Weide, T., Kremerskothen, J., Michgehl, U., Pavenstädt, H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Túbulos Renais/metabolismo , Rim/metabolismo , Receptores Notch/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Endocitose , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Rim/fisiopatologia , Túbulos Renais/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
Oncogene ; 37(23): 3045-3057, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540834

RESUMO

The tumor suppressor LKB1 is an essential serine/threonine kinase, which regulates various cellular processes such as cell metabolism, cell proliferation, cell polarity, and cell migration. Germline mutations in the STK11 gene (encoding LKB1) are the cause of the Peutz-Jeghers syndrome, which is characterized by benign polyps in the intestine and a higher risk for the patients to develop intestinal and extraintestinal tumors. Moreover, mutations and misregulation of LKB1 have been reported to occur in most types of tumors and are among the most common aberrations in lung cancer. LKB1 activates several downstream kinases of the AMPK family by direct phosphorylation in the T-loop. In particular the activation of AMPK upon energetic stress has been intensively analyzed in various diseases, including cancer to induce a metabolic switch from anabolism towards catabolism to regulate energy homeostasis and cell survival. In contrast, the regulation of LKB1 itself has long been only poorly understood. Only in the last years, several proteins and posttranslational modifications of LKB1 have been analyzed to control its localization, activity and recognition of substrates. Here, we summarize the current knowledge about the upstream regulation of LKB1, which is important for the understanding of the pathogenesis of many types of tumors.


Assuntos
Genes Supressores de Tumor , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos de Bifenilo/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/farmacologia , Neoplasias Pulmonares/genética , Lisossomos/metabolismo , Mutação , Síndrome de Peutz-Jeghers/genética , Fosforilação , Sumoilação , Ubiquitinação
14.
Sci Signal ; 11(517)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440511

RESUMO

Polarity is a fundamental property of most cell types. The Par protein complex is a major driving force in generating asymmetrically localized protein networks and consists of atypical protein kinase C (aPKC), Par3, and Par6. Dysfunction of this complex causes developmental abnormalities and diseases such as cancer. We identified a PDZ domain-binding motif in Par6 that was essential for its interaction with Par3 in vitro and for Par3-mediated membrane localization of Par6 in cultured cells. In fly embryos, we observed that the PDZ domain-binding motif was functionally redundant with the PDZ domain in targeting Par6 to the cortex of epithelial cells. Our structural analyses by x-ray crystallography and NMR spectroscopy showed that both the PDZ1 and PDZ3 domains but not the PDZ2 domain in Par3 engaged in a canonical interaction with the PDZ domain-binding motif in Par6. Par3 thus has the potential to recruit two Par6 proteins simultaneously, which may facilitate the assembly of polarity protein networks through multivalent PDZ domain interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios PDZ , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Ligação Proteica
15.
Cell Mol Life Sci ; 74(24): 4573-4586, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28717874

RESUMO

Mammalian podocytes, the key determinants of the kidney's filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical-basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.


Assuntos
Diafragma/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Drosophila/fisiologia , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Animais , Diafragma/metabolismo , Células Epiteliais/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo
16.
Nat Commun ; 8: 15747, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28649994

RESUMO

The serine/threonine kinase LKB1 regulates various cellular processes such as cell proliferation, energy homeostasis and cell polarity and is frequently downregulated in various tumours. Many downstream pathways controlled by LKB1 have been described but little is known about the upstream regulatory mechanisms. Here we show that targeting of the kinase to the membrane by a direct binding of LKB1 to phosphatidic acid is essential to fully activate its kinase activity. Consequently, LKB1 mutants that are deficient for membrane binding fail to activate the downstream target AMPK to control mTOR signalling. Furthermore, the in vivo function of LKB1 during development of Drosophila depends on its capacity to associate with membranes. Strikingly, we find LKB1 to be downregulated in malignant melanoma, which exhibit aberrant activation of Akt and overexpress phosphatidic acid generating Phospholipase D. These results provide evidence for a fundamental mechanism of LKB1 activation and its implication in vivo and during carcinogenesis.


Assuntos
Membrana Celular/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Geneticamente Modificados , Cães , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Células Madin Darby de Rim Canino , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ratos
17.
J Am Soc Nephrol ; 28(7): 2093-2107, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28154200

RESUMO

The nephron is the basic physiologic subunit of the mammalian kidney and is made up of several apicobasally polarized epithelial cell types. The process of apicobasal polarization in animal cells is controlled by the evolutionarily conserved Crumbs (CRB), Partitioning-defective, and Scribble protein complexes. Here, we investigated the role of protein associated with LIN-7 1 (Pals1, also known as Mpp5), a core component of the apical membrane-determining CRB complex in the nephron. Pals1 interacting proteins, including Crb3 and Wwtr1/Taz, have been linked to renal cyst formation in mice before. Immunohistologic analysis revealed Pals1 expression in renal tubular cells and podocytes of human kidneys. Mice lacking one Pals1 allele (functionally haploid for Pals1) in nephrons developed a fully penetrant phenotype, characterized by cyst formation and severe defects in renal barrier function, which led to death within 6-8 weeks. In Drosophila nephrocytes, deficiency of the Pals1 ortholog caused alterations in slit-diaphragm-like structures. Additional studies in epithelial cell culture models revealed that Pals1 functions as a dose-dependent upstream regulator of the crosstalk between Hippo- and TGF-ß-mediated signaling. Furthermore, Pals1 haploinsufficiency in mouse kidneys associated with the upregulation of Hippo pathway target genes and marker genes of TGF-ß signaling, including biomarkers of renal diseases. These findings support a link between apical polarity proteins and renal diseases, especially renal cyst diseases. Further investigation of the Pals1-linked networks is required to decipher the mechanisms underlying the pathogenesis of these diseases.


Assuntos
Haploinsuficiência , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Núcleosídeo-Fosfato Quinase/genética , Proteinúria/genética , Animais , Drosophila , Feminino , Masculino , Camundongos
18.
Cell Oncol (Dordr) ; 39(4): 389-96, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27480082

RESUMO

PURPOSE: Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues. METHODS: We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry. RESULTS: No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR. CONCLUSION: In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias das Glândulas Salivares/patologia , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Western Blotting , Transformação Celular Neoplásica , Regulação para Baixo , Humanos , Imuno-Histoquímica , Neoplasias das Glândulas Salivares/metabolismo , Análise Serial de Tecidos
19.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527002

RESUMO

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/metabolismo
20.
Mol Biol Evol ; 31(7): 1710-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682284

RESUMO

The scaffolding protein KIBRA (also called WWC1) is involved in the regulation of important intracellular transport processes and the establishment of cell polarity. Furthermore, KIBRA/WWC1 is an upstream regulator of the Hippo signaling pathway that controls cell proliferation and organ size in animals. KIBRA/WWC1 represents only one member of the WWC protein family that also includes the highly similar proteins WWC2 and WWC3. Although the function of KIBRA/WWC1 was studied intensively in cells and animal models, the importance of WWC2 and WWC3 was not yet elucidated. Here, we describe evolutionary, molecular, and functional aspects of the WWC family. We show that the WWC genes arose in the ancestor of bilateral animals (clades such as insects and vertebrates) from a single founder gene most similar to the present KIBRA/WWC1-like sequence of Drosophila. This situation was still maintained until the common ancestor of lancelet and vertebrates. In fish, a progenitor-like sequence of mammalian KIBRA/WWC1 and WWC2 is expressed together with WWC3. Finally, in all tetrapods, the three family members, KIBRA/WWC1, WWC2, and WWC3, are found, except for a large genomic deletion including WWC3 in Mus musculus. At the molecular level, the highly conserved WWC proteins share a similar primary structure, the ability to form homo- and heterodimers and the interaction with a common set of binding proteins. Furthermore, all WWC proteins negatively regulate cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP, the major effector of the Hippo pathway.


Assuntos
Proteínas de Transporte/genética , Fosfoproteínas/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Evolução Molecular , Células HEK293 , Humanos , Família Multigênica , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Filogenia , Deleção de Sequência , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA