Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659636

RESUMO

Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorders, to priming the microbiome for cancer treatment, and restoring microbiomes impacted by cancer treatment. Quantifying the extent of engraftment following an FMT is important in determining if a recipient didn't respond because the engrafted microbiome didn't produce the desired outcomes (a successful FMT, but negative treatment outcome), or the microbiome didn't engraft (an unsuccessful FMT and negative treatment outcome). The lack of a consistent methodology for quantifying FMT engraftment extent hinders the assessment of FMT success and its relation to clinical outcomes, and presents challenges for comparing FMT results and protocols across studies. Here we review 46 studies of FMT in humans and model organisms and group their approaches for assessing the extent to which an FMT engrafts into three criteria: 1) Chimeric Asymmetric Community Coalescence investigates microbiome shifts following FMT engraftment using methods such as alpha diversity comparisons, beta diversity comparisons, and microbiome source tracking. 2) Donated Microbiome Indicator Features tracks donated microbiome features (e.g., amplicon sequence variants or species of interest) as a signal of engraftment with methods such as differential abundance testing based on the current sample collection, or tracking changes in feature abundances that have been previously identified (e.g., from FMT or disease-relevant literature). 3) Temporal Stability examines how resistant post-FMT recipient's microbiomes are to reverting back to their baseline microbiome. Individually, these criteria each highlight a critical aspect of microbiome engraftment; investigated together, however, they provide a clearer assessment of microbiome engraftment. We discuss the pros and cons of each of these criteria, providing illustrative examples of their application. We also introduce key terminology and recommendations on how FMT studies can be analyzed for rigorous engraftment extent assessment.

2.
BMJ Paediatr Open ; 7(1)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080609

RESUMO

INTRODUCTION: Aflatoxin B1 (AFB1) is a carcinogen produced by Aspergillus flavus and Aspergillus parasiticus which grow on maize. Given the high prevalence of child stunting (ie, impaired growth) and other nutritional disorders in low-income and middle-income countries, where maize is consumed, the role of aflatoxin exposure may be significant. Observational reports have demonstrated associations between aflatoxin exposure and impaired child growth; however, most have been cross-sectional and have not assessed seasonal variations in aflatoxin, food preparation and dynamic changes in growth. Biological mechanistic data on how aflatoxin may exert an impact on child growth is missing. This study incorporates a prospective cohort of children from rural Guatemala to assess (1) temporal associations between aflatoxin exposure and child growth and (2) possible mediation of the gut microbiome among aflatoxin exposure, inflammation and child growth. METHODS AND ANALYSIS: We will prospectively evaluate aflatoxin exposure and height-for-age difference trajectories for 18 months in a cohort of 185 children aged 6-9 months at enrolment. We will assess aflatoxin exposure levels and biomarkers of gut and systemic inflammation. We will examine the faecal microbiome of each child and identify key species and metabolic pathways for differing AFB1 exposure levels and child growth trajectories. In parallel, we will use bioreactors, inoculated with faeces, to investigate the response of the gut microbiome to varying levels of AFB1 exposure. We will monitor key microbial metabolites and AFB1 biotransformation products to study nutrient metabolism and the impact of the gut microbiome on aflatoxin detoxification/metabolism. Finally, we will use path analysis to summarise the effect of aflatoxin exposure and the gut microbiome on child growth. ETHICS AND DISSEMINATION: Ethics approval was obtained from Arizona State University Institutional Review Board (IRB; STUDY00016799) and Wuqu' Kawoq/Maya Health Alliance IRB (WK-2022-003). Findings will be disseminated in scientific presentations and peer-reviewed publications.


Assuntos
Aflatoxinas , Microbioma Gastrointestinal , Criança , Humanos , Aflatoxina B1/análise , Aflatoxinas/análise , Reatores Biológicos , Estudos Transversais , Guatemala/epidemiologia , Inflamação , Estudos Prospectivos , Zea mays , Estudos Observacionais como Assunto
3.
Microbiol Spectr ; 10(6): e0259322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36301091

RESUMO

Geobacter sulfurreducens is a ubiquitous iron-reducing bacterium in soils, and in engineered systems, it can respire an electrode to produce measurable electric current. Its unique metabolism, heavily dependent on an extensive network of cytochromes, requires a unique cell composition. In this work, we used metallomics, cell fraction and elemental analyses, and transcriptomics to study and analyze the cell composition of G. sulfurreducens. Elemental composition studies (C, H, O, N, and ash content) showed high C:O and H:O ratios of approximately 1.7:1 and 0.25:1, indicative of more reduced cell composition that is consistent with high lipid content. Our study shows that G. sulfurreducens cells have a large amount of iron (2 ± 0.2 µg/g dry weight) and lipids (32 ± 0.5% dry weight/dry weight) and that this composition does not change whether the cells are grown with a soluble or an insoluble electron acceptor. The high iron concentration, higher than similar microorganisms, is attributed to the production of cytochromes that are abundant in transcriptomic analyses in both solid and soluble electron acceptor growth. The unique cell composition of G. sulfurreducens must be considered when growing this microorganism for lab studies and commercial applications. IMPORTANCE Geobacter sulfurreducens is an electroactive microorganism. In nature, it grows on metallic minerals by transferring electrons to them, effectively "breathing" metals. In a manmade system, it respires an electrode to produce an electric current. It has become a model organism for the study of electroactive organisms. There are potential biotechnological applications of an organism that can bridge the gap between biology and electrical signal and, as a ubiquitous iron reducer in soils around the world, G. sulfurreducens has an impact on the global iron cycle. We measured the concentrations of metals, macromolecules, and basic elements in G. sulfurreducens to define this organism's composition. We also used gene expression data to discuss which proteins those metals could be associated with. We found that G. sulfurreducens has a large amount of lipid and iron compared to other bacteria-these observations are important for future microbiologists and biotechnologists working with the organism.


Assuntos
Compostos Férricos , Geobacter , Oxirredução , Compostos Férricos/metabolismo , Geobacter/genética , Geobacter/metabolismo , Metais , Ferro/metabolismo , Citocromos/genética , Citocromos/metabolismo , Lipídeos
4.
Front Cell Infect Microbiol ; 11: 702628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660336

RESUMO

Menopause in human females and subsequent ovarian hormone deficiency, particularly concerning 17ß-estradiol (E2), increase the risk for metabolic dysfunctions associated with obesity, diabetes type 2, cardiovascular diseases, and dementia. Several studies indicate that these disorders are also strongly associated with compositional changes in the intestinal microbiota; however, how E2 deficiency and hormone therapy affect the gut microbial community is not well understood. Using a rat model, we aimed to evaluate how ovariectomy (OVX) and subsequent E2 administration drive changes in metabolic health and the gut microbial community, as well as potential associations with learning and memory. Findings indicated that OVX-induced ovarian hormone deficiency and E2 treatment had significant impacts on several health-affecting parameters, including (a) the abundance of some intestinal bacterial taxa (e.g., Bifidobacteriaceae and Porphyromonadaceae), (b) the abundance of microbial short-chain fatty acids (SCFAs) (e.g., isobutyrate), (c) weight/BMI, and (d) high-demand spatial working memory following surgical menopause. Furthermore, exploratory correlations among intestinal bacteria abundance, cognition, and BMI underscored the putative influence of surgical menopause and E2 administration on gut-brain interactions. Collectively, this study showed that surgical menopause is associated with physiological and behavioral changes, and that E2-linked compositional changes in the intestinal microbiota might contribute to some of its related negative health consequences. Overall, this study provides novel insights into interactions among endocrine and gastrointestinal systems in the post-menopausal life stage that collectively alter the risk for the development and progression of cardiovascular, metabolic, and dementia-related diseases.


Assuntos
Microbioma Gastrointestinal , Animais , Estrogênios , Feminino , Menopausa , Obesidade , Ratos , Memória Espacial
5.
Environ Eng Sci ; 38(7): 626-634, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316248

RESUMO

Chromium (Cr) (VI) is a toxic, mutagenic, and carcinogenic water pollutant. The standard ion chromatography (IC) method for quantification of Cr (VI) in water samples is Environmental Protection Agency Method 218.7, which requires postcolumn derivatization with 1,5-diphenylcarbazide and UV-Vis spectroscopy detection. Method 218.7 is Cr (VI) specific; thus, it does not allow detection of co-occurring natural and anthropogenic anions in environmental media. In this study, we developed an isocratic IC method with suppressed conductivity detection, a Metrohm Metrosep A Supp 7 column, and sodium carbonate/acetonitrile as mobile phase for simultaneous quantification of Cr (VI), C l O 4 - , As (V) as arsenate, Se (VI) as selenate, and the common anions F-, Cl-, N O 2 - , N O 3 - , and S O 4 2 - . The determination coefficient for every analyte was >0.99 and the method showed good accuracy in quantification. Cr (VI), As (V), Se (VI), and C l O 4 - limit of detection and limit of quantification were 0.1-0.6 µg/L and 0.5-2.1 µg/L, respectively. Recovery of Cr (VI) in various aqueous samples (tap water, surface water, groundwater, and wastewater) was between 97.2% and 102.8%. Overall, most analytes showed acceptable recovery (80-120%) in the environmental samples tested. The IC method was applied to track Cr (VI) and other anion concentrations in laboratory batch microcosms experiments with soil, surface water, and anaerobic medium. The IC method developed in this study should prove useful to environmental practitioners, academic and research organizations, and industries for monitoring low concentrations of multiple anions in environmental media, helping to decrease the sample requirement, time, and cost of analysis.

6.
Nutrients ; 13(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070816

RESUMO

BACKGROUND: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.


Assuntos
Araceae/metabolismo , Araceae/microbiologia , Dieta Mediterrânea , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica/métodos , Polifenóis/sangue , Polifenóis/urina , Adulto , Humanos , Israel , Juglans/metabolismo , Juglans/microbiologia , Espectrometria de Massas , Valor Nutritivo , Polifenóis/administração & dosagem , Chá/metabolismo , Chá/microbiologia
7.
Environ Sci Technol ; 54(22): 14422-14431, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33151674

RESUMO

Trichloroethene (TCE) and perchlorate (ClO4-) are cocontaminants at multiple Superfund sites. Fe0 is often used during TCE bioremediation with Dehalococcoides mccartyi to establish anoxic conditions in the aquifer. However, the synergy between Fe0 abiotic reactions and microbiological TCE and ClO4- reductions is poorly understood and seldom addressed in the literature. Here, we investigated the effects of Fe0 and its oxidation product, Fe2+, at field-relevant concentrations in promoting microbial TCE and ClO4- reductions. Using semibatch microcosms with a Superfund site soil and groundwater, we showed that the high Fe0 concentration (16.5 g L-1) expected during Fe0in situ injection mostly yielded TCE abiotic reduction to ethene/ethane. However, such concentrations obscured dechlorination by D. mccartyi, impeded ClO4- reduction, and enhanced SO42- reduction and methanogenesis. Fe2+ at 0.25 g L-1 substantially delayed conversion of TCE to ethene when compared to no-Fe controls. A low concentration of aged-Fe0 synergistically promoted microbiological TCE dechlorination to ethene while achieving complete ClO4- reduction. Collectively, these results illustrate scenarios relevant at or downstream of Fe0 injection zones when Fe0 is used to facilitate microbial dechlorination. Results also underscore the potential detrimental effects of Fe0 and bioaugmentation cultures coinjection for in situ treatment of chlorinated ethenes and ClO4-.


Assuntos
Água Subterrânea , Tricloroetileno , Biodegradação Ambiental , Ferro , Percloratos
8.
NPJ Biofilms Microbiomes ; 6(1): 12, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170068

RESUMO

Although the etiology of obesity is not well-understood, genetic, environmental, and microbiome elements are recognized as contributors to this rising pandemic. It is well documented that Roux-en-Y gastric bypass (RYGB) surgery drastically alters the fecal microbiome, but data are sparse on temporal and spatial microbiome and metabolome changes, especially in human populations. We characterized the structure and function (through metabolites) of the microbial communities in the gut lumen and structure of microbial communities on mucosal surfaces in nine morbidly obese individuals before, 6 months, and 12 months after RYGB surgery. Moreover, using a comprehensive multi-omic approach, we compared this longitudinal cohort to a previously studied cross-sectional cohort (n = 24). In addition to the expected weight reduction and improvement in obesity-related comorbidities after RYGB surgery, we observed that the impact of surgery was much greater on fecal communities in comparison to mucosal ones. The changes in the fecal microbiome were linked to increased concentrations of branched-chain fatty acids and an overall decrease in secondary bile acid concentrations. The microbiome and metabolome data sets for this longitudinal cohort strengthen our understanding of the persistent impact of RYGB on the gut microbiome and its metabolism. Our findings highlight the importance of changes in mucosal and fecal microbiomes after RYGB surgery. The spatial modifications in the microbiome after RYGB surgery corresponded to persistent changes in fecal fermentation and bile acid metabolism, both of which are associated with improved metabolic outcomes.


Assuntos
Bactérias/classificação , Derivação Gástrica/efeitos adversos , Metabolômica/métodos , Obesidade/cirurgia , Análise de Sequência de DNA/métodos , Adulto , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
9.
Sci Rep ; 10(1): 2371, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047224

RESUMO

Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.


Assuntos
Microbioma Gastrointestinal , Infecções por Herpesviridae/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linfócitos/imunologia , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Serpinas/química
10.
BMC Microbiol ; 18(1): 210, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541450

RESUMO

BACKGROUND: Modifiable lifestyle factors (e.g. dietary intake and physical activity) are important contributors to weight gain during college. The purpose of this study was to evaluate whether associations exist between body mass index, physical activity, screen time, dietary consumption (fat, protein, carbohydrates, and fiber), and gut microbial diversity during the first year of college. Racially/ethnically diverse college students (n = 82; 61.0% non-white) at a large Southwestern university completed self-reported physical activity and 24-h recall dietary assessments, height and weight measurements, and provided one fecal sample for gut microbiome analysis. Fecal microbial community composition was assessed with Illumina MiSeq next-generation sequencing of PCR amplified 16S rRNA genes. Post-hoc analyses compared microbial diversity by groups of high and low physical activity and fiber intake using QIIME and LEfSe bioinformatics software. RESULTS: No statistically significant differences were observed between body mass index and gut microbiome abundance and diversity. Median daily consumption of dietary fiber was 11.2 (7.6, 14.9) g/d, while the median self-reported moderate-to-vigorous physical activity (MVPA) was 55.7 (27.9, 79.3) min/d and screen time 195.0 (195.0, 315.0) min/d. Microbial analysis by LEfSe identified Paraprevotellaceae, Lachnospiraceae, and Lachnospira as important phylotypes in college students reporting greater MVPA, while Enterobacteriaceae and Enterobacteriales were more enriched among students reporting less MVPA (p < 0.05). Barnesiellaceae, Alphaproteobacteria, and Ruminococcus were more abundant taxa among those consuming less than the median fiber intake (p < 0.05). Post-hoc analyses comparing weighted UniFrac distance metrics based on combined categories of high and low MVPA and fiber revealed that clustering distances between members of the high MVPA-low fiber group were significantly smaller when compared to distances between members of all other MVPA-fiber groups (p < 0.0001). CONCLUSIONS: Habitual fiber consumption and MVPA behaviors help explain the differential abundance of specific microbial taxa and overall gut microbial diversity differences in first-year college students.


Assuntos
Bactérias/isolamento & purificação , Índice de Massa Corporal , Fezes/microbiologia , Microbioma Gastrointestinal , Tempo de Tela , Adolescente , Bactérias/classificação , Bactérias/genética , Estudos de Coortes , Estudos Transversais , Dieta , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Exercício Físico , Feminino , Habitação , Humanos , Masculino , Filogenia , Estudantes/estatística & dados numéricos , Universidades/estatística & dados numéricos , Adulto Jovem
11.
ISME J ; 11(9): 2047-2058, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28548658

RESUMO

Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) are anatomically different bariatric operations. RYGB achieves greater weight loss compared with LAGB. Changes in the gut microbiome have been documented after RYGB, but not LAGB, and the microbial contribution to sustainable surgical weight loss warrants further evaluation. We hypothesized that RYGB imposes greater changes on the microbiota and its metabolism than LAGB, and that the altered microbiota may contribute to greater weight loss. Using multi-omic approaches, we analyzed fecal microbial community structure and metabolites of pre-bariatric surgery morbidly obese (PreB-Ob), normal weight (NW), post-RYGB, and post-LAGB participants. RYGB microbiomes were significantly different from those from NW, LAGB and PreB-Ob. Microbiome differences between RYGB and PreB-Ob populations were mirrored in their metabolomes. Diversity was higher in RYGB compared with LAGB, possibly because of an increase in the abundance of facultative anaerobic, bile-tolerant and acid-sensible microorganisms in the former. Possibly because of lower gastric acid exposure, phylotypes from the oral cavity, such as Escherichia, Veillonella and Streptococcus, were in greater abundance in the RYGB group, and their abundances positively correlated with percent excess weight loss. Many of these post-RYGB microorganisms are capable of amino-acid fermentation. Amino-acid and carbohydrate fermentation products-isovalerate, isobutyrate, butyrate and propionate-were prevalent in RYGB participants, but not in LAGB participants. RYGB resulted in greater alteration of the gut microbiome and metabolome than LAGB, and RYGB group exhibited unique microbiome composed of many amino-acid fermenters, compared with nonsurgical controls.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Fezes/microbiologia , Feminino , Derivação Gástrica , Gastroplastia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso , Adulto Jovem
12.
J Chromatogr Sci ; 52(2): 137-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377651

RESUMO

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the simultaneous detection of six chlorinated ethenes and ethene itself, using a liquid sample volume of 1 mL by concentrating the compounds onto an 85-µm carboxen-polydimenthylsiloxane solid-phase microextraction fiber in 5 min and subsequent chromatographic analysis in 9.15 min. Linear increases in signal response were obtained over three orders of magnitude (∼0.05 to ∼50 µM) for simultaneous analysis with coefficient of determination (R(2)) values of ≥ 0.99. The detection limits of the method (1.3-6 µg/L) were at or below the maximum contaminant levels specified by the EPA. Matrix spike studies with groundwater and mineral medium showed recovery rates between 79-108%. The utility of the method was demonstrated in lab-scale sediment flow-through columns assessing the bioremediation potential of chlorinated ethene-contaminated groundwater. Owing to its low sample volume requirements, good sensitivity and broad target analyte range, the method is suitable for routine compliance monitoring and is particularly attractive for interpreting the bench-scale feasibility studies that are commonly performed during the remedial design stage of groundwater cleanup projects.


Assuntos
Cromatografia Gasosa/métodos , Microextração em Fase Sólida/métodos , Tetracloroetileno/análise , Tricloroetileno/análise , Poluentes Químicos da Água/análise , Limite de Detecção
13.
Proc Natl Acad Sci U S A ; 106(7): 2365-70, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164560

RESUMO

Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H(2)-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H(2)-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H(2)-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H(2)-producing bacteria with relatively high numbers of H(2)-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H(2) transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.


Assuntos
Derivação Gástrica/efeitos adversos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade/patologia , Obesidade/cirurgia , Adulto , Archaea/metabolismo , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Dados de Sequência Molecular , Obesidade/microbiologia , Complicações Pós-Operatórias , RNA Ribossômico 16S/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA