Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(2): 239-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145325

RESUMO

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Glutamato-Amônia Ligase , Humanos , Camundongos , Mitose
2.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34375583

RESUMO

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , RNA/genética , Fatores de Transcrição/genética , Adenosina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Elementos Reguladores de Transcrição/genética , Ativação Transcricional/genética
3.
J Vis Exp ; (160)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32568241

RESUMO

Enhancers are pivotal genomic elements scattered through the mammalian genome and dictate tissue-specific gene expression programs. Increasing evidence has shown that enhancers not only provide DNA binding motifs for transcription factors (TFs) but also generate non-coding RNAs that are referred to as eRNAs. Studies have demonstrated that eRNA transcripts can play significant roles in gene regulation in both physiology and disease. Commonly used methods to investigate the function of eRNAs are constrained to "loss-of-function" approaches by knockdown of eRNAs, or by chemical inhibition of the enhancer transcription. There has not been a robust method to conduct "gain-of-function" studies of eRNAs to mimic specific disease conditions such as human cancer, where eRNAs are often overexpressed. Here, we introduce a method for precisely and robustly activating eRNAs for functional interrogation of their roles by applying the dCas9 mediated Synergistic Activation Mediators (SAM) system. We present the entire workflow of eRNA activation, from the selection of eRNAs, the design of gRNAs to the validation of eRNA activation by RT-qPCR. This method represents a unique approach to study the roles of a particular eRNA in gene regulation and disease development. In addition, this system can be employed for unbiased CRISPR screening to identify phenotype-driving eRNA targets in the context of a specific disease.


Assuntos
Elementos Facilitadores Genéticos/genética , RNA/genética , Transcrição Gênica/genética , Humanos
4.
PLoS One ; 15(3): e0230246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160258

RESUMO

Cells respond to changes in environmental conditions by activating signal transduction pathways and gene expression programs. Here we present a dataset to explore the relationship between environmental stresses, kinases, and global gene expression in yeast. We subjected 28 drug-sensitive kinase mutants to 10 environmental conditions in the presence of inhibitor and performed mRNA deep sequencing. With these data, we reconstructed canonical stress pathways and identified examples of crosstalk among pathways. The data also implicated numerous kinases in novel environment-specific roles. However, rather than regulating dedicated sets of target genes, individual kinases tuned the magnitude of induction of the environmental stress response (ESR)-a gene expression signature shared across the set of perturbations-in environment-specific ways. This suggests that the ESR integrates inputs from multiple sensory kinases to modulate gene expression and growth control. As an example, we provide experimental evidence that the high osmolarity glycerol pathway is an upstream negative regulator of protein kinase A, a known inhibitor of the ESR. These results elaborate the central axis of cellular stress response signaling.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 10(1): 4562, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594934

RESUMO

Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple cancer signaling pathways through putatively regulating their target genes, including clinically actionable genes and immune checkpoints. They may also affect drug response by within-pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.


Assuntos
Antineoplásicos/farmacologia , Elementos Facilitadores Genéticos/genética , Neoplasias/terapia , RNA não Traduzido/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genômica , Humanos , Concentração Inibidora 50 , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Biol Phys ; 45(2): 161-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903354

RESUMO

The results of thermal studies of denaturation of hen egg white lysozyme (HEWL) in water and an aqueous solution of N-butylurea (BU) are presented. High-precision densimetric measurements were used to characterize and analyze the changes of the specific volume, v, during temperature elevation. The temperature of the midpoint of protein denaturation was also determined by nanoDSF technique (differential scanning fluorimetry). The densities of lysozyme solutions were measured at temperatures ranging from 298.15 to 353.15 K with an interval of 5 K at atmospheric pressure (0.1 MPa). The concentration of the protein covered the range from 2 to 20 mg per 1 ml of the solution. The optimal range of the concentration for the densimetric measurements was roughly estimated. In the transition region, the structural changes of the protein are accompanied by the biggest increase of ν values with temperature. Our measurements show that this effect can be monitored from volumetric data without precise determination of protein concentration. The results prove that a two-state model of denaturation could be used for data interpretation. Contrary to common misconception, the volumetric measurements suggest that the denatured protein does not necessarily need to be in a fully extended state. In this way, the 'protein volume paradox' could be explained. The surface area of the protein remains unchanged and thus the increase of the specific volume of the protein is relatively small. Additionally, the self-stabilizing effect of the protein in BU solution was reported. For the HEWL in pure water, this phenomenon was not observed.


Assuntos
Muramidase/química , Desnaturação Proteica/efeitos dos fármacos , Temperatura , Ureia/análogos & derivados , Animais , Fluorometria , Ureia/farmacologia
7.
Proc Natl Acad Sci U S A ; 114(2): E152-E160, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28031489

RESUMO

Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes-huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively-in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Linhagem Celular , Citosol/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA