Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(7): 999-1011, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083999

RESUMO

Serum apolipoprotein C3 (APOC3) predicts incident cardiovascular events in people with type 1 diabetes, and silencing of APOC3 prevents both lesion initiation and advanced lesion necrotic core expansion in a mouse model of type 1 diabetes. APOC3 acts by slowing the clearance of triglyceride-rich lipoproteins, but lipid-free APOC3 has recently been reported to activate an inflammasome pathway in monocytes. We therefore investigated the contribution of hematopoietic inflammasome pathways to atherosclerosis in mouse models of type 1 diabetes. LDL receptor-deficient diabetes mouse models were transplanted with bone marrow from donors deficient in NOD, LRR and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) or gasdermin D (GSDMD), an inflammasome-induced executor of pyroptotic cell death. Mice with diabetes exhibited inflammasome activation and consistently, increased plasma interleukin-1ß (IL-1ß) and IL-18. Hematopoietic deletions of NLRP3, AIM2, or GSDMD caused smaller atherosclerotic lesions in diabetic mice. The increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis because hematopoietic GSDMD deficiency failed to prevent necrotic core expansion in advanced lesions. Our findings demonstrate that AIM2 and NLRP3 inflammasomes contribute to atherogenesis in diabetes and suggest that necrotic core expansion is independent of macrophage pyroptosis. ARTICLE HIGHLIGHTS: The contribution of hematopoietic cell inflammasome activation to atherosclerosis associated with type 1 diabetes is unknown. The goal of this study was to address whether hematopoietic NOD, LRR, and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) inflammasomes, or the pyroptosis executioner gasdermin D (GSDMD) contributes to atherosclerosis in mouse models of type 1 diabetes. Diabetic mice exhibited increased inflammasome activation, with hematopoietic deletions of NLRP3, AIM2, or GSDMD causing smaller atherosclerotic lesions in diabetic mice, but the increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis. Further studies on whether inflammasome activation contributes to cardiovascular complications in people with type 1 diabetes are warranted.


Assuntos
Aterosclerose , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Melanoma , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Experimental/complicações , Gasderminas , Camundongos Endogâmicos NOD , Necrose , Proteínas de Transporte
4.
Diabetes ; 69(10): 2133-2143, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32694213

RESUMO

In addition to increasing the risk of an initial myocardial infarction (MI), diabetes increases the risk of a recurrent MI. Previous work suggests that an experimental MI can accelerate atherosclerosis via monocytosis. To test whether diabetes and experimental MI synergize to accelerate atherosclerosis, we performed ligation of the left anterior descending coronary artery to induce experimental MI or sham surgery in nondiabetic and diabetic mice with preexisting atherosclerosis. All mice subjected to experimental MI had significantly reduced left ventricular function. In our model, in comparisons with nondiabetic sham mice, neither diabetes nor MI resulted in monocytosis. Neither diabetes nor MI led to increased atherosclerotic lesion size, but diabetes accelerated lesion progression, exemplified by necrotic core expansion. The necrotic core expansion was dependent on monocyte recruitment, as mice with myeloid cells deficient in the adhesion molecule integrin α4 were protected from necrotic core expansion. In summary, diabetes, but not MI, accelerates lesion progression, suggesting that the increased risk of recurrent MI in diabetes is due to a higher lesional burden and/or elevated risk factors rather than the acceleration of the underlying pathology from a previous MI.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Adesão Celular/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ecocardiografia , Feminino , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Reação em Cadeia da Polimerase em Tempo Real
5.
Am J Pathol ; 190(4): 830-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035059

RESUMO

The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1ß levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1ß expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1ß levels in part via an ACSL1-mediated pathway.


Assuntos
Infecções por Escherichia coli/complicações , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Inflamação/imunologia , Metabolismo dos Lipídeos/imunologia , Proteínas de Membrana/metabolismo , Próstata/imunologia , Animais , Bilirrubina/metabolismo , Monóxido de Carbono/metabolismo , Proliferação de Células , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Heme Oxigenase-1/genética , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Próstata/metabolismo , Próstata/microbiologia , Próstata/patologia , Transdução de Sinais
6.
J Lipid Res ; 61(1): 33-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722970

RESUMO

Chronic inflammation contributes to cardiovascular disease. Increased levels of the inflammatory cytokine, TNF-α, are often present in conditions associated with cardiovascular disease risk, and TNF-α induces a number of pro-atherogenic effects in macrovascular endothelial cells, including expression of adhesion molecules and chemokines, and lipoprotein uptake and transcytosis to the subendothelial tissue. However, little is known about the roles of acyl-CoA synthetases (ACSLs), enzymes that esterify free fatty acids into their acyl-CoA derivatives, or about the effects of TNF-α on ACSLs in endothelial cells. Therefore, we investigated the effects of TNF-α on ACSLs and downstream lipids in cultured human coronary artery endothelial cells and human umbilical vein endothelial cells. We demonstrated that TNF-α induces ACSL1, ACSL3, and ACSL5, but not ACSL4, in both cell types. TNF-α also increased oleoyl-CoA levels, consistent with the increased ACSL3 expression. RNA-sequencing demonstrated that knockdown of ACSL3 had no marked effects on the TNF-α transcriptome. Instead, ACSL3 was required for TNF-α-induced lipid droplet formation in cells exposed to oleic acid. These results demonstrate that increased acyl-CoA synthesis as a result of ACSL3 induction is part of the TNF-α response in human macrovascular endothelial cells.


Assuntos
Coenzima A Ligases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Células Cultivadas , Coenzima A Ligases/genética , Células Endoteliais/enzimologia , Feminino , Humanos , Gotículas Lipídicas/metabolismo , Masculino
7.
Nutrients ; 10(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282904

RESUMO

The dietary fatty acid 10,12 conjugated linoleic acid (10,12 CLA) promotes weight loss by increasing fat oxidation, but its effects on atherosclerosis are less clear. We recently showed that weight loss induced by 10,12 CLA in an atherosclerosis-susceptible mouse model with characteristics similar to human metabolic syndrome is accompanied by accumulation of alternatively activated macrophages within subcutaneous adipose tissue. The objective of this study was to evaluate whether 10,12 CLA-mediated weight loss was associated with an atheroprotective phenotype. Male low-density lipoprotein receptor deficient (Ldlr-/-) mice were made obese with 12 weeks of a high-fat, high-sucrose diet feeding (HFHS: 36% fat, 36% sucrose, 0.15% added cholesterol), then either continued on the HFHS diet with or without caloric restriction (CR), or switched to a diet with 1% of the lard replaced by either 9,11 CLA or 10,12 CLA for 8 weeks. Atherosclerosis and lipid levels were quantified at sacrifice. Weight loss in mice following 10,12 CLA supplementation or CR as a weight-matched control group had improved cholesterol and triglyceride levels, yet only the 10,12 CLA-treated mice had improved en face and aortic sinus atherosclerosis. 10,12 CLA-supplemented mice had increased lesion macrophage content, with enrichment of surrounding perivascular adipose tissue (PVAT) alternative macrophages, which may contribute to the anti-atherosclerotic effect of 10,12 CLA.


Assuntos
Tecido Adiposo/patologia , Aterosclerose/prevenção & controle , Ácidos Linoleicos Conjugados/farmacologia , Macrófagos/patologia , Redução de Peso/efeitos dos fármacos , Animais , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Obesidade/complicações , Obesidade/etiologia , Obesidade/terapia , Receptores de LDL/deficiência , Receptores de LDL/fisiologia
8.
Diabetes ; 67(5): 946-959, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483182

RESUMO

Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6Chi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes.


Assuntos
Aterosclerose/prevenção & controle , Glicemia/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Animais , Aterosclerose/etiologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Masculino , Síndrome Metabólica/complicações , Camundongos , Camundongos Knockout , Monócitos , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/metabolismo , Receptores de LDL/genética , Transdução de Sinais
9.
Am J Pathol ; 188(2): 343-352, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29154962

RESUMO

Diabetic kidney disease and atherosclerotic disease are major causes of morbidity and mortality associated with type 2 diabetes (T2D), and diabetic kidney disease is a major cardiovascular risk factor. The black and tan, brachyury (BTBR) mouse strain with leptin deficiency (Lepob) has emerged as one of the best models of human diabetic kidney disease. However, no T2D mouse model of combined diabetic kidney disease and atherosclerosis exists. Our goal was to generate such a model. To this end, the low-density lipoprotein (LDL) receptor was targeted for degradation via inducible degrader of the LDL receptor (IDOL) overexpression, using liver-targeted adenoassociated virus serotype DJ/8 (AAV-DJ/8) in BTBR wild-type and BTBR Lepob mice. Liver-targeted IDOL-AAV-DJ/8 increased plasma LDL cholesterol compared with the control enhanced green fluorescent protein AAV-DJ/8. IDOL-induced dyslipidemia caused formation of atherosclerotic lesions of an intermediate stage, which contained both macrophages and smooth muscle cells. BTBR Lepob mice exhibited diabetic kidney disease. IDOL-induced dyslipidemia worsened albuminuria and glomerular macrophage accumulation but had no effect on mesangial expansion or podocyte numbers. Thus, by inducing hepatic degradation of the LDL receptor, we generated a T2D model of combined kidney disease and atherosclerosis. This model provides a new tool to study mechanisms, interactions, and treatment strategies of kidney disease and atherosclerosis in T2D.


Assuntos
Aterosclerose/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Colesterol/sangue , Dependovirus/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/sangue , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/complicações , Vetores Genéticos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores de LDL/biossíntese , Receptores de LDL/deficiência , Receptores de LDL/genética
10.
J Lipid Res ; 58(6): 1174-1185, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28416579

RESUMO

Acyl-CoA thioesterase 7 (ACOT7) is an intracellular enzyme that converts acyl-CoAs to FFAs. ACOT7 is induced by lipopolysaccharide (LPS); thus, we investigated downstream effects of LPS-induced induction of ACOT7 and its role in inflammatory settings in myeloid cells. Enzymatic thioesterase activity assays in WT and ACOT7-deficient macrophage lysates indicated that endogenous ACOT7 contributes a significant fraction of total acyl-CoA thioesterase activity toward C20:4-, C20:5-, and C22:6-CoA, but contributes little activity toward shorter acyl-CoA species. Lipidomic analyses revealed that LPS causes a dramatic increase, primarily in bis(monoacylglycero)phosphate species containing long (≥C20) polyunsaturated acyl-chains in macrophages, and that the limited effect observed by ACOT7 deficiency is restricted to glycerophospholipids containing 20-carbon unsaturated acyl-chains. Furthermore, ACOT7 deficiency did not detectably alter the ability of LPS to induce cytokines or prostaglandin E2 production in macrophages. Consistently, although ACOT7 was induced in macrophages from diabetic mice, hematopoietic ACOT7 deficiency did not alter the stimulatory effect of diabetes on systemic inflammation or atherosclerosis in LDL receptor-deficient mice. Thus, inflammatory stimuli induce ACOT7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages, and, although ACOT7 has preferential thioesterase activity toward these lipid species, loss of ACOT7 has no major detrimental effect on macrophage inflammatory phenotypes.≥.


Assuntos
Macrófagos/metabolismo , Palmitoil-CoA Hidrolase/biossíntese , Fosfolipídeos/metabolismo , Animais , Citocinas/biossíntese , Dinoprostona/metabolismo , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glicerofosfolipídeos/metabolismo , Inflamação/enzimologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Palmitoil-CoA Hidrolase/deficiência , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo
11.
PLoS One ; 11(6): e0158316, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27351842

RESUMO

Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.


Assuntos
Aterosclerose/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Células Mieloides/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Aterosclerose/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/complicações , Dinoprostona/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores de Prostaglandina E Subtipo EP4/deficiência , Receptores de Prostaglandina E Subtipo EP4/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 33(2): 232-40, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241406

RESUMO

OBJECTIVE: Saturated fatty acids, such as palmitic and stearic acid, cause detrimental effects in endothelial cells and have been suggested to contribute to macrophage accumulation in adipose tissue and the vascular wall, in states of obesity and insulin resistance. Long-chain fatty acids are believed to require conversion into acyl-CoA derivatives to exert most of their detrimental effects, a reaction catalyzed by acyl-CoA synthetases (ACSLs). The objective of this study was to investigate the role of ACSL1, an ACSL isoform previously shown to mediate inflammatory effects in myeloid cells, in regulating endothelial cell responses to a saturated fatty acid-rich environment in vitro and in vivo. METHODS AND RESULTS: Saturated fatty acids caused increased inflammatory activation, endoplasmic reticulum stress, and apoptosis in mouse microvascular endothelial cells. Forced ACSL1 overexpression exacerbated the effects of saturated fatty acids on apoptosis and endoplasmic reticulum stress. However, endothelial ACSL1 deficiency did not protect against the effects of saturated fatty acids in vitro, nor did it protect insulin-resistant mice fed a saturated fatty acid-rich diet from macrophage adipose tissue accumulation or increased aortic adhesion molecule expression. CONCLUSIONS: Endothelial ACSL1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment.


Assuntos
Apoptose , Coenzima A Ligases/metabolismo , Células Endoteliais/enzimologia , Ácidos Graxos/metabolismo , Inflamação/enzimologia , Obesidade/enzimologia , Acil Coenzima A/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Aorta/metabolismo , Bovinos , Células Cultivadas , Coenzima A Ligases/deficiência , Coenzima A Ligases/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Células Endoteliais/imunologia , Células Endoteliais/patologia , Ativação Enzimática , Inflamação/imunologia , Inflamação/patologia , Resistência à Insulina , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Palmitoil Coenzima A/metabolismo , Interferência de RNA , Fatores de Tempo , Transfecção , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(12): E715-24, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22308341

RESUMO

The mechanisms that promote an inflammatory environment and accelerated atherosclerosis in diabetes are poorly understood. We show that macrophages isolated from two different mouse models of type 1 diabetes exhibit an inflammatory phenotype. This inflammatory phenotype associates with increased expression of long-chain acyl-CoA synthetase 1 (ACSL1), an enzyme that catalyzes the thioesterification of fatty acids. Monocytes from humans and mice with type 1 diabetes also exhibit increased ACSL1. Furthermore, myeloid-selective deletion of ACSL1 protects monocytes and macrophages from the inflammatory effects of diabetes. Strikingly, myeloid-selective deletion of ACSL1 also prevents accelerated atherosclerosis in diabetic mice without affecting lesions in nondiabetic mice. Our observations indicate that ACSL1 plays a critical role by promoting the inflammatory phenotype of macrophages associated with type 1 diabetes; they also raise the possibilities that diabetic atherosclerosis has an etiology that is, at least in part, distinct from the etiology of nondiabetic vascular disease and that this difference is because of increased monocyte and macrophage ACSL1 expression.


Assuntos
Aterosclerose/metabolismo , Coenzima A Ligases/metabolismo , Diabetes Mellitus/metabolismo , Macrófagos/citologia , Alelos , Animais , Glicemia/metabolismo , Transplante de Medula Óssea , Feminino , Deleção de Genes , Humanos , Inflamação , Lipídeos/química , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Monócitos/citologia , Fenótipo , Receptores de LDL/genética
14.
J Lipid Res ; 52(4): 782-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21242590

RESUMO

Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall.


Assuntos
Artérias/citologia , Coenzima A Ligases/metabolismo , Dinoprostona/metabolismo , Miócitos de Músculo Liso/metabolismo , Western Blotting , Células Cultivadas , Coenzima A Ligases/genética , Vetores Genéticos/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
PLoS Genet ; 4(5): e1000069, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18464897

RESUMO

Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications.


Assuntos
Expressão Gênica , Marcação de Genes , Transgenes , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Colesterol/sangue , Doxiciclina/administração & dosagem , Doxiciclina/metabolismo , Células-Tronco Embrionárias/fisiologia , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Elementos Isolantes , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , Retroviridae/genética , Transativadores/genética , Transativadores/metabolismo
16.
Proc Natl Acad Sci U S A ; 105(6): 2082-7, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18252823

RESUMO

Cardiovascular disease, largely because of disruption of atherosclerotic lesions, accounts for the majority of deaths in people with type 1 diabetes. Recent mouse models have provided insights into the accelerated atherosclerotic lesion initiation in diabetes, but it is unknown whether diabetes directly worsens more clinically relevant advanced lesions. We therefore used an LDL receptor-deficient mouse model, in which type 1 diabetes can be induced at will, to investigate the effects of diabetes on preexisting lesions. Advanced lesions were induced by feeding mice a high-fat diet for 16 weeks before induction of diabetes. Diabetes, independently of lesion size, increased intraplaque hemorrhage and plaque disruption in the brachiocephalic artery of mice fed low-fat or high-fat diets for an additional 14 weeks. Hyperglycemia was not sufficient to induce plaque disruption. Furthermore, diabetes resulted in increased accumulation of monocytic cells positive for S100A9, a proinflammatory biomarker for cardiovascular events, and for a macrophage marker protein, without increasing lesion macrophage content. S100A9 immunoreactivity correlated with intraplaque hemorrhage. Aggressive lowering primarily of triglyceride-rich lipoproteins prevented both plaque disruption and the increased S100A9 in diabetic atherosclerotic lesions. Conversely, oleate promoted macrophage differentiation into an S100A9-positive population in vitro, thereby mimicking the effects of diabetes. Thus, diabetes increases plaque disruption, independently of effects on plaque initiation, through a mechanism that requires triglyceride-rich lipoproteins and is associated with an increased accumulation of S100A9-positive monocytic cells. These findings indicate an important link between diabetes, plaque disruption, and the innate immune system.


Assuntos
Aterosclerose/patologia , Diabetes Mellitus Tipo 1/patologia , Receptores de LDL/fisiologia , Animais , Calgranulina B/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Gorduras na Dieta/administração & dosagem , Feminino , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética
17.
Am J Pathol ; 168(6): 2064-73, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16723719

RESUMO

Very low-density lipoprotein (VLDL) and LDL plasma levels are associated with cardiovascular mortality. Whereas VLDL/LDL lowering causes regression of early atherosclerotic lesions, less is known about the effects of aggressive lipid lowering on regression of advanced complex lesions. We therefore investigated the effect of VLDL/LDL lowering on pre-existing lesions in LDL receptor-deficient mice. Mice fed a high-fat diet for 16 weeks developed advanced lesions with fibrous caps, necrotic cores, and cholesterol clefts in the brachiocephalic artery. After an additional 14 weeks on a low-fat diet, plasma cholesterol levels decreased from 21.0 +/- 2.6 to 8.4 +/- 0.6 mmol/L, but lesions did not regress. Levels of VLDL/LDL were further lowered by using a helper-dependent adenovirus encoding the VLDL receptor (HD-Ad-VLDLR) under control of a liver-selective promoter. Treatment with HD-Ad-VLDLR together with a low-fat diet regimen resulted in reduced lesion size (cross-sectional area decreased from 146,272 +/- 19,359 to 91,557 +/- 15,738 microm2) and an 89% reduction in the cross-sectional lesion area occupied by macrophages compared to controls. These results show that aggressive VLDL/LDL lowering achieved by hepatic overexpression of VLDLR combined with a low-fat diet regimen induces regression of advanced plaques in the brachiocephalic artery of LDL receptor-deficient mice.


Assuntos
Aterosclerose/patologia , Técnicas de Transferência de Genes , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Macrófagos/metabolismo , Receptores de LDL/genética , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Dieta com Restrição de Gorduras , Vetores Genéticos , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Diabetes ; 53(12): 3217-25, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561953

RESUMO

Hyperglycemia and hyperlipidemia are important risk factors for diabetes-accelerated atherosclerosis. Macrophage proliferation has been implicated in the progression of atherosclerosis. We therefore investigated the effects of hyperglycemia and hyperlipidemia on macrophage proliferation in murine atherosclerotic lesions and isolated primary macrophages. Hyperglycemic LDL receptor-deficient mice that were fed a cholesterol-free diet for 12 weeks did not have elevated cholesterol levels compared with nondiabetic mice, and there was no evidence of increased macrophage proliferation in atherosclerotic lesions. Moreover, elevated glucose levels did not increase proliferation of isolated mouse peritoneal macrophages. In contrast, hyperglycemic LDL receptor-deficient mice that were fed a cholesterol-rich diet showed increased cholesterol levels concomitant with macrophage proliferation in atherosclerotic lesions. Glucose promoted lipid and protein oxidation of LDL in vitro. Glucose-oxidized LDL resulted in phosphorylation of extracellular signal-regulated kinase and protein kinase B/Akt and stimulated proliferation of isolated macrophages. The mitogenic effect of glucose-oxidized LDL was mediated by CD36 and by extracellular signal-regulated kinase activation induced by protein kinase C-dependent and phosphatidylinositol 3-kinase-dependent pathways. Thus, hyperglycemia is not sufficient to stimulate macrophage proliferation in lesions of atherosclerosis or in isolated macrophages. A combination of hyperglycemia and hyperlipidemia, however, stimulates macrophage proliferation by a pathway that may involve the glucose-dependent oxidation of LDL.


Assuntos
Arteriosclerose/patologia , Hiperglicemia/fisiopatologia , Hiperlipidemias/fisiopatologia , Lipoproteínas LDL/fisiologia , Macrófagos/patologia , Animais , Divisão Celular , Colesterol na Dieta , Replicação do DNA , Hiperglicemia/complicações , Hiperlipidemias/complicações , Camundongos , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA