Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JTO Clin Res Rep ; 3(12): 100435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561283

RESUMO

Introduction: Brain metastases (BM) severely affect the prognosis and quality of life of patients with NSCLC. Recently, molecularly targeted agents were found to have promising activity against BM in patients with NSCLC whose primary tumors carry "druggable" mutations. Nevertheless, it remains critical to identify specific pathogenic alterations that drive NSCLC-BM and that can provide novel and more effective therapeutic targets. Methods: To identify potentially targetable pathogenic alterations in NSCLC-BM, we profiled somatic copy number alterations (SCNAs) in 51 matched pairs of primary NSCLC and BM samples from 33 patients with lung adenocarcinoma and 18 patients with lung squamous cell carcinoma. In addition, we performed multiregion copy number profiling on 15 BM samples and whole-exome sequencing on 40 of 51 NSCLC-BM pairs. Results: BM consistently had a higher burden of SCNAs compared with the matched primary tumors, and SCNAs were typically homogeneously distributed within BM, suggesting BM do not undergo extensive evolution once formed. By comparing focal SCNAs in matched NSCLC-BM pairs, we identified putative BM-driving alterations affecting multiple cancer genes, including several potentially targetable alterations in genes such as CDK12, DDR2, ERBB2, and NTRK1, which we validated in an independent cohort of 84 BM samples. Finally, we identified putative pathogenic alterations in multiple cancer genes, including genes involved in epigenome editing and 3D genome organization, such as EP300, CTCF, and STAG2, which we validated by targeted sequencing of an independent cohort of 115 BM samples. Conclusions: Our study represents the most comprehensive genomic characterization of NSCLC-BM available to date, paving the way to functional studies aimed at assessing the potential of the identified pathogenic alterations as clinical biomarkers and targets.

2.
Sci Adv ; 8(48): eadc9851, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449615

RESUMO

We show that elevation of mitochondrial superoxide generation increases Caenorhabditis elegans life span by enhancing a RAS-dependent ROS (reactive oxygen species) signaling pathway (RDRS) that controls the expression of half of the genome as well as animal composition and physiology. RDRS stimulation mimics a program of change in gene expression that is normally observed at the end of postembryonic development. We further show that RDRS is regulated by negative feedback from the superoxide dismutase 1 (SOD-1)-dependent conversion of superoxide into cytoplasmic hydrogen peroxide, which, in turn, acts on a redox-sensitive cysteine (C118) of RAS. Preventing C118 oxidation by replacement with serine, or mimicking oxidation by replacement with aspartic acid, leads to opposite changes in the expression of the same large set of genes that is affected when RDRS is stimulated by mitochondrial superoxide. The identities of these genes suggest that stimulation of the pathway extends life span by boosting turnover and repair while moderating damage from metabolic activity.

3.
Int J Biochem Cell Biol ; 131: 105901, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309959

RESUMO

Oncogenic KRAS is one of the most common drivers of human cancer. Despite intense research, no effective therapy to directly inhibit oncogenic KRAS has yet been approved and KRAS mutant tumors remain associated with a poor prognosis. This short review discusses the current knowledge of the redox regulation of RAS and examines the newest findings on cysteine 118 (C118) as a potential novel target for KRAS inhibition.


Assuntos
Antineoplásicos/uso terapêutico , Cisteína/metabolismo , Neoplasias/metabolismo , Piperazinas/uso terapêutico , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/uso terapêutico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nitrosação , Oxirredução/efeitos dos fármacos , Inibidores de Proteases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ácidos Sulfínicos
4.
PLoS Genet ; 16(6): e1008838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544191

RESUMO

Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Peróxidos/metabolismo , Vulva/crescimento & desenvolvimento , Proteínas ras/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Mutação com Ganho de Função , Genes de Helmintos/genética , Oxirredução , Oxirredutases/metabolismo , Peróxidos/análise , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA