Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 4(4): 184-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637296

RESUMO

Overview: Cardiovascular disease remains a leading cause of death worldwide, with vulnerable plaque rupture the underlying cause of many heart attacks and strokes. Much research is focused on identifying an imaging biomarker to differentiate stable and vulnerable plaque. Magnetic Resonance Imaging (MRI) is a non-ionising and non-invasive imaging modality with excellent soft tissue contrast. However, MRI has relatively low sensitivity (micromolar) for contrast agent detection compared to nuclear imaging techniques. There is also an increasing emphasis on developing MRI probes that are not based on gadolinium chelates because of increasing concerns over associated systemic toxicity and deposits1. To address the sensitivity and safety concerns of gadolinium this project focused on the development of a high relaxivity probe based on superparamagnetic iron oxide nanoparticles for the imaging of atherosclerotic plaque with MRI. With development, this may facilitate differentiating stable and vulnerable plaque in vivo.Aim: To develop a range of MRI contrast agents based on superparamagnetic iron oxide nanoparticles (SPIONs), and test them in a murine model of advanced atherosclerosis. Methods: Nanoparticles of four core sizes were synthesised by thermal decomposition and coated with poly(maleicanhydride-alt-1-octadecene) (PMAO), poly(ethyleneimine) (PEI) or alendronate, then characterised for core size, hydrodynamic size, surface potential and relaxivity. On the basis of these results, one candidate was selected for further studies. In vivo studies using 10 nm PMAO-coated SPIONs were performed in ApoE-/- mice fed a western diet and instrumented with a perivascular cuff on the left carotid artery. Control ApoE-/- mice were fed a normal chow diet and were not instrumented. Mice were scanned on a 3T MR scanner (Philips Achieva) with the novel SPION contrast agent, and an elastin-targeted gadolinium agent that was shown previously to enable visualisation of plaque burden. Histological analysis was undertaken to confirm imaging findings through staining for macrophages, CX3CL1, elastin, tropoelastin, and iron. Results: The lead SPION agent consisted of a 10 nm iron oxide core with poly(maleicanhydride-alt-1-octadecene), (-36.21 mV, r2 18.806 mmol-1/s-1). The irregular faceting of the iron oxide core resulted in high relaxivity and the PMAO provided a foundation for further functionalisation on surface -COOH groups. The properties of the contrast agent, including the negative surface charge and hydrodynamic size, were designed to maximise circulation time and evade rapid clearance through the renal system or phagocytosis. In vitro testing showed that the SPION agent was non-toxic. In vivo results show that the novel contrast agent accumulates in similar vascular regions to a gadolinium-based contrast agent (Gd-ESMA) targeted to elastin, which accumulates in plaque. There was a significant difference in SPION signal between the instrumented and the contralateral non-instrumented vessels in diseased mice (p = 0.0411, student's t-test), and between the instrumented diseased vessel and control vessels (p = 0.0043, 0.0022, student's t-test). There was no significant difference between the uptake of either contrast agent between stable and vulnerable plaques (p = 0.3225, student's t-test). Histological verification was used to identify plaques, and Berlin Blue staining confirmed the presence of nanoparticle deposits within vulnerable plaques and co-localisation with macrophages. Conclusion: This work presents a new MRI contrast agent for atherosclerosis which uses an under-explored surface ligand, demonstrating promising properties for in vivo behaviour, is still in circulation 24 hours post-injection with limited liver uptake, and shows good accumulation in a murine plaque model.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Placa Aterosclerótica , Animais , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Meios de Contraste/química , Meios de Contraste/farmacocinética , Dieta Hiperlipídica , Feminino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
2.
Circulation ; 136(12): 1140-1154, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28698173

RESUMO

BACKGROUND: Myeloid cells are central to atherosclerotic lesion development and vulnerable plaque formation. Impaired ability of arterial phagocytes to uptake apoptotic cells (efferocytosis) promotes lesion growth and establishment of a necrotic core. The transcription factor interferon regulatory factor (IRF)-5 is an important modulator of myeloid function and programming. We sought to investigate whether IRF5 affects the formation and phenotype of atherosclerotic lesions. METHODS: We investigated the role of IRF5 in atherosclerosis in 2 complementary models. First, atherosclerotic lesion development in hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice and ApoE-/- mice with a genetic deletion of IRF5 (ApoE-/-Irf5-/-) was compared and then lesion development was assessed in a model of shear stress-modulated vulnerable plaque formation. RESULTS: Both lesion and necrotic core size were significantly reduced in ApoE-/-Irf5-/- mice compared with IRF5-competent ApoE-/- mice. Necrotic core size was also reduced in the model of shear stress-modulated vulnerable plaque formation. A significant loss of CD11c+ macrophages was evident in ApoE-/-Irf5-/- mice in the aorta, draining lymph nodes, and bone marrow cell cultures, indicating that IRF5 maintains CD11c+ macrophages in atherosclerosis. Moreover, we revealed that the CD11c gene is a direct target of IRF5 in macrophages. In the absence of IRF5, CD11c- macrophages displayed a significant increase in expression of the efferocytosis-regulating integrin-ß3 and its ligand milk fat globule-epidermal growth factor 8 protein and enhanced efferocytosis in vitro and in situ. CONCLUSIONS: IRF5 is detrimental in atherosclerosis by promoting the maintenance of proinflammatory CD11c+ macrophages within lesions and controlling the expansion of the necrotic core by impairing efferocytosis.


Assuntos
Aterosclerose/patologia , Fatores Reguladores de Interferon/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Células Cultivadas , Imuno-Histoquímica , Integrina beta3/metabolismo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fagocitose , Resistência ao Cisalhamento
3.
J Mol Cell Cardiol ; 89(Pt B): 168-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523517

RESUMO

Macrophages, a significant component of atherosclerotic plaques vulnerable to acute complications, can be pro-inflammatory (designated M1), regulatory (M2), lipid- (Mox) or Heme-induced (Mhem). We showed previously that low (LSS) and oscillatory (OSS) shear stress cause thin-cap fibroatheroma and stable smooth muscle cell-rich plaque formation respectively in ApoE-knockout (ApoE(-/-)) mice. Here we investigated whether different shear stress conditions relate to specific changes in macrophage polarization and plaque morphology by applying a shear stress-altering cast to the carotid arteries of high fat-fed ApoE(-/-) mice. The M1 markers iNOS and IRF5 were highly expressed in macrophage-rich areas of LSS lesions compared to OSS lesions 6weeks after cast placement, while the M2 marker Arginase-1, and Mox/Mhem markers HO-1 and CD163 were elevated in OSS lesions. Our data indicates shear stress could be an important determinant of macrophage polarization in atherosclerosis, with low shear promoting M1 programming.


Assuntos
Polaridade Celular , Macrófagos/patologia , Placa Aterosclerótica/patologia , Resistência ao Cisalhamento , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/patologia , Feminino , Camundongos Endogâmicos C57BL
4.
J R Soc Interface ; 12(106)2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25808341

RESUMO

In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.


Assuntos
Biotecnologia/tendências , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Redes Reguladoras de Genes/genética , Genes Sintéticos/genética , Biologia Sintética/tendências , Animais , Mamíferos
5.
Eur Heart J ; 34(42): 3251-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966311
6.
Atherosclerosis ; 227(2): 236-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23390893

RESUMO

AIMS: Wall shear stress differentially regulates the arginase pathway in carotid arteries perfused ex vivo. Specific patterns of wall shear stress can locally determine atherosclerotic plaque size and composition in vivo. The present work investigates the effects of arginase inhibition on shear stress induced plaque composition. METHODS AND RESULTS: Carotid arteries of apolipoprotein E deficient mice were exposed to high (HSS), low (LSS) and oscillatory (OSS) shear stress conditions by the placement of a local shear stress modifier device for 9 weeks with or without the administration of the arginase inhibitor N-ω-Hydroxy-nor-L-arginine (nor-Noha) (10 mg/kg, i.p., 5 days/week). Carotid arginase activity was measured by colorimetric determination of urea. Atherosclerotic plaque size and composition, arginase expression and cellular localization were assessed by immunohistochemistry. Arginase activity was significantly increased in both LSS and OSS regions as compared to HSS. In the lesions, arginase II isoform co-localized preferentially with EC. Inhibition of arginase by nor-Noha decreased arginase activity and reduced plaque size in both LSS and OSS regions. Arginase inhibition affected mainly the composition of plaques developed in LSS regions by decreasing the total vascular ROS, the number of macrophages, apoptosis rate, lipid and collagen contents. CONCLUSIONS: Arginase activity is modulated by patterns of wall shear stress in vivo. Chronic inhibition of vascular arginase decreased the size of atherosclerotic lesions in both OSS and LSS regions, whereas changes on plaque composition were more pronounced in plaques induced by LSS. We identified wall shear stress as a key biomechanical regulator of arginase during plaque formation and stability.


Assuntos
Apolipoproteínas E/genética , Arginase/antagonistas & inibidores , Artérias Carótidas/patologia , Placa Aterosclerótica/patologia , Animais , Apoptose , Arginase/metabolismo , Arginina/análogos & derivados , Arginina/farmacologia , Aterosclerose/metabolismo , Fenômenos Biomecânicos , Artérias Carótidas/enzimologia , Proliferação de Células , Colágeno/análise , Hemodinâmica , Lipídeos/análise , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/enzimologia , Placa Aterosclerótica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Fatores de Tempo
7.
Arterioscler Thromb Vasc Biol ; 33(2): 354-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202368

RESUMO

OBJECTIVE: The aim of this study was to analyze how an altered collagen structure affects development of atherosclerotic plaques. METHODS AND RESULTS: Fibromodulin-null mice develop an abnormal collagen fibril structure. In apolipoprotein E (ApoE)-null and ApoE/fibromodulin-null mice, a shear stress-modifying carotid artery cast induced formation of atherosclerotic plaques of different phenotypes; inflammatory in low-shear stress regions and fibrous in oscillatory shear stress regions. Electron microscopy showed that collagen fibrils were thicker and more heterogeneous in oscillatory shear stress lesions from ApoE/fibromodulin-null mice. Low-shear stress lesions were smaller in ApoE/fibromodulin-null mice and contained less lipids. Total plaque burden in aortas stained en face with Oil Red O, as well as lipid accumulation in aortic root lesions, was also decreased in ApoE/fibromodulin-null mice. In addition, lipid accumulation in RAW264.7 macrophages cultured on fibromodulin-deficient extracellular matrix was decreased, whereas levels of interleukin-6 and -10 were increased. Our results show that an abnormal plaque collagen fibril structure can influence atherosclerotic plaque development. CONCLUSIONS: The present findings suggest a more complex role for collagen in plaque stability than previously anticipated, in that it may promote lipid-accumulation and inflammation at the same time as it provides mechanical stability.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/metabolismo , Proteínas da Matriz Extracelular/deficiência , Lipoproteínas LDL/metabolismo , Proteoglicanas/deficiência , Animais , Aorta/imunologia , Aorta/fisiopatologia , Aorta/ultraestrutura , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Artérias Carótidas/imunologia , Artérias Carótidas/fisiopatologia , Artérias Carótidas/ultraestrutura , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/prevenção & controle , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestrutura , Fibromodulina , Genótipo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fenótipo , Placa Aterosclerótica , Proteoglicanas/genética , Fluxo Sanguíneo Regional , Estresse Mecânico
8.
Circ Res ; 108(8): 950-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21350211

RESUMO

RATIONALE: The nuclear factor (NF)-κB pathway is involved in arterial inflammation. Although the signaling pathways that regulate transcriptional activation of NF-κB are defined, the mechanisms that regulate the expression levels of NF-κB transcription factors are uncertain. OBJECTIVE: We studied the signaling mechanisms that regulate RelA NF-κB subunit expression in endothelial cells (ECs) and their role in arterial inflammation. METHODS AND RESULTS: Gene silencing and chromatin immunoprecipitation revealed that RelA expression was positively regulated by c-Jun N-terminal kinase (JNK) and the downstream transcription factor ATF2 in ECs. We concluded that this pathway promotes focal arterial inflammation as genetic deletion of JNK1 reduced NF-κB expression and macrophage accumulation at an atherosusceptible site. We hypothesized that JNK signaling to NF-κB may be controlled by mechanical forces because atherosusceptibility is associated with exposure to disturbed blood flow. This was assessed by positron emission tomography imaging of carotid arteries modified with a constrictive cuff, a method that was developed to study the effects of disturbed flow on vascular physiology in vivo. This approach coupled to en face staining revealed that disturbed flow elevates NF-κB expression and inflammation in murine carotid arteries via JNK1. CONCLUSIONS: We demonstrate that disturbed blood flow promotes arterial inflammation by inducing NF-κB expression in endothelial cells via JNK-ATF2 signaling. Thus, our findings illuminate a novel form of JNK-NF-κB crosstalk that may determine the focal nature of arterial inflammation and atherosclerosis.


Assuntos
Aorta/metabolismo , Endotélio Vascular/patologia , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/biossíntese , NF-kappa B/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Fator de Transcrição RelA/biossíntese , Animais , Aorta/patologia , Aorta/fisiopatologia , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 8 Ativada por Mitógeno/genética , Fluxo Sanguíneo Regional/genética , Resistência ao Cisalhamento/fisiologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/fisiologia , Regulação para Cima/genética
9.
Circulation ; 123(5): 524-32, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262999

RESUMO

BACKGROUND: Vein grafting in coronary artery surgery is complicated by a high restenosis rate resulting from the development of vascular inflammation, intimal hyperplasia, and accelerated atherosclerosis. In contrast, arterial grafts are relatively resistant to these processes. Vascular inflammation is regulated by signaling intermediaries, including p38 mitogen-activated protein (MAP) kinase, that trigger endothelial cell (EC) expression of chemokines (eg, interleukin-8, monocyte chemotactic protein-1) and other proinflammatory molecules. Here, we have tested the hypothesis that p38 MAP kinase activation in response to arterial shear stress (flow) may occur more readily in venous ECs, leading to greater proinflammatory activation. METHODS AND RESULTS: Comparative reverse-transcriptase polymerase chain reaction and Western blotting revealed that arterial shear stress induced p38-dependent expression of monocyte chemotactic protein-1 and interleukin-8 in porcine jugular vein ECs. In contrast, porcine aortic ECs were protected from shear stress-induced expression of p38-dependent chemokines as a result of rapid induction of MAP kinase phosphatase-1. However, we observed with both cultured porcine jugular vein ECs and perfused veins that venous ECs can be protected by brief treatment with dexamethasone, which induced MAP kinase phosphatase-1 to suppress proinflammatory activation. CONCLUSIONS: Arterial but not venous ECs are protected from proinflammatory activation in response to short-term exposure to high shear stress by the induction of MAP kinase phosphatase-1. Dexamethasone pretreatment arterializes venous ECs by inducing MAP kinase phosphatase-1 and may protect veins from inflammation.


Assuntos
Artérias/metabolismo , Dexametasona/farmacologia , Endotélio Vascular/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Veias/metabolismo , Animais , Anti-Inflamatórios , Artérias/efeitos dos fármacos , Prótese Vascular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Substâncias Protetoras , Suínos , Ativação Transcricional/efeitos dos fármacos , Veias/efeitos dos fármacos
10.
Int J Exp Pathol ; 91(6): 485-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20804542

RESUMO

Evidence is accumulating that calcium-rich microdeposits in the vascular wall might play a crucial role in the onset and progression of atherosclerosis. Here we investigated an atherosclerotic lesion of the carotid artery in an established murine model, i.e. the apolipoprotein E-deficient (APOE(-/-) ) mouse to identify (i) the presence of microcalcifications, if any, (ii) the elemental composition of microcalcifications with special reference to calcium/phosphorus mass ratio and (iii) co-localization of increased concentrations of iron and zinc with microcalcifications. Atherosclerosis was induced by a flow-divider placed around the carotid artery resulting in low and high shear-stress regions. Element composition was assessed with a proton microprobe. Microcalcifications, predominantly present in the thickened intima of the low shear-stress region, were surrounded by areas with normal calcium levels, indicating that calcium-precipitation is a local event. The diameter of intimal microcalcifications varied from 6 to 70 µm. Calcium/phosphorus ratios of microcalcifications varied from 0.3 to 4.8, mainly corresponding to the ratio of amorphous calcium-phosphate. Increased iron and zinc concentrations commonly co-localized with microcalcifications. Our findings indicate that the atherosclerotic process in the murine carotid artery is associated with locally accumulated calcium, iron and zinc. The calcium-rich deposits resemble amorphous calcium phosphate rather than pure hydroxyapatite. We propose that the APOE(-/-) mouse, in which atherosclerosis was evoked by a flow-divider, offers a useful model to investigate the pathophysiological significance of accumulation of elements such as calcium, iron and zinc.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/patologia , Calcinose/patologia , Artérias Carótidas/patologia , Animais , Aterosclerose/genética , Calcinose/genética , Cálcio/análise , Artérias Carótidas/química , Camundongos , Camundongos Knockout , Fósforo/análise , Estresse Mecânico , Túnica Íntima/patologia , Zinco/análise
11.
Atherosclerosis ; 204(1): 26-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19233360

RESUMO

Angiotensin II (ATII)-mediated hypertension increases the risk for acute coronary events, which may be caused by augmented collagen degradation. Interstitial fibers of collagen type I in the plaque can be degraded by MMP8 and MMP13 specifically. Indeed high MMP8 levels have been correlated with ruptured plaques in patients. To study the contribution of ATII in plaque rupture, we evaluated its effect on MMP8 and MMP13 activity on the vulnerable lesions using an extravascular device that induces regions of pro-atherogenic shear stress in the carotid arteries of ApoE KO mice. This triggers the growth of lesions with a "vulnerable" macrophage-rich phenotype (referred to as upstream lesions) and lesions with a "stable" fibrotic phenotype (referred to as downstream lesions). ATII administration increased mean blood pressure, and increased the incidence of intra-plaque hemorrhages (IPH) from 30% to 73% of the animals in the upstream segments. The area of IPH was also increased by 5-fold. No IPHs were observed in the downstream lesions of the control group or the ATII group. In addition, ATII treatment doubled the size of upstream and downstream lesions. Upstream lesions in the ATII group were decreased in collagen content by 3-fold, contained 2-fold higher MMP8 and MMP13 levels, with a 2- and 3-fold increase in collagen type I degradation by MMP8 and MMP13 respectively compared to the upstream lesions in the control group. Gene expression analysis showed general increase in procollagens and TIMPs expression in response to ATII. However, ATII also decreased procollagen 5alpha3 expression in downstream lesions and decreased TIMP4 expression in upstream lesions. These data show that ATII promotes a "stable" fibrotic phenotype by inducing severe intra-plaque hemorrhages, characterized by increased degradation of interstitial collagen I via an MMP-mediated (MMP8 and MMP13) mechanism.


Assuntos
Angiotensina II/metabolismo , Doenças das Artérias Carótidas/enzimologia , Artéria Carótida Primitiva/enzimologia , Colágeno Tipo I/metabolismo , Hemorragia/etiologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Pró-Colágeno/metabolismo , Angiotensina II/administração & dosagem , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Pressão Sanguínea , Doenças das Artérias Carótidas/complicações , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/fisiopatologia , Colágeno Tipo I/genética , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Perfilação da Expressão Gênica , Hemorragia/enzimologia , Hemorragia/patologia , Bombas de Infusão Implantáveis , Infusões Subcutâneas , Macrófagos/enzimologia , Macrófagos/patologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 8 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pró-Colágeno/genética , Índice de Gravidade de Doença , Inibidores Teciduais de Metaloproteinases/metabolismo
12.
J Clin Invest ; 117(3): 616-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17304353

RESUMO

We previously found that low shear stress (LSS) induces atherosclerotic plaques in mice with increased lipid and matrix metalloproteinase content and decreased vascular smooth muscle and collagen content. Here, we evaluated the role of chemokines in this process, using an extravascular device inducing regions of LSS, high shear stress, and oscillatory shear stress (OSS) in the carotid artery. One week of shear stress alterations induced expression of IFN-gamma-inducible protein-10 (IP-10) exclusively in the LSS region, whereas monocyte chemoattractant protein-1 (MCP-1) and the mouse homolog of growth-regulated oncogene alpha (GRO-alpha) were equally upregulated in both LSS and OSS regions. After 3 weeks, GRO-alpha and IP-10 were specifically upregulated in LSS regions. After 9 weeks, lesions with thinner fibrous caps and larger necrotic cores were found in the LSS region compared with the OSS region. Equal levels of MCP-1 expression were observed in both regions, while expression of fractalkine was found in the LSS region only. Blockage of fractalkine inhibited plaque growth and resulted in striking differences in plaque composition in the LSS region. We conclude that LSS or OSS triggers expression of chemokines involved in atherogenesis. Fractalkine upregulation is critically important for the composition of LSS-induced atherosclerotic lesions.


Assuntos
Aterosclerose/etiologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/etiologia , Quimiocinas/fisiologia , Resistência ao Cisalhamento , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Receptor 1 de Quimiocina CX3C , Artérias Carótidas/química , Doenças das Artérias Carótidas/patologia , Quimiocinas/genética , Expressão Gênica , Camundongos , Camundongos Mutantes , Receptores de Citocinas/análise , Receptores de HIV/análise , Estresse Mecânico
13.
Circulation ; 115(5): 609-16, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17242283

RESUMO

BACKGROUND: Atherosclerosis is considered an inflammatory disease. Recent studies provided evidence for a predominant upstream location of plaque inflammation. The present study introduces a novel technique that evaluates the underlying mechanism of this spatial organization. METHODS AND RESULTS: In hypercholesterolemic rabbits, atherosclerosis of the infrarenal aorta was induced by a combination of endothelial denudation and a high-cholesterol diet (2% cholesterol for 2 months). At the time of death, aortic vessel segments were dissected and reconstructed with a new technique that preserved the original intravascular ultrasound-derived lumen geometry. This enabled us to study the spatial relation of histological markers like macrophages, smooth muscle cells, lipids, gelatinolytic activity, and oxidized low-density lipoprotein. Results showed a predominant upstream localization of macrophages and gelatinase activity. Colocalization studies indicated that gelatinase activity was associated with macrophages and smooth muscle cells. Further analysis revealed that this was caused by subsets of smooth muscle cells and macrophages, which were associated with oxidized low-density lipoprotein accumulation. CONCLUSIONS: Upstream localization of a vulnerable plaque phenotype is probably due to an accumulation of oxidized low-density lipoprotein, which activates/induces subsets of smooth muscle cells and macrophages to gelatinase production.


Assuntos
Aterosclerose/enzimologia , Gelatina/metabolismo , Macrófagos/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Animais , Aorta/enzimologia , Aorta/patologia , Aterosclerose/patologia , Gelatinases/metabolismo , Macrófagos/patologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Coelhos
14.
Circulation ; 113(23): 2744-53, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16754802

RESUMO

BACKGROUND: Atherosclerotic lesions are predominantly observed in curved arteries and near side branches, where low or oscillatory shear stress patterns occur, suggesting a causal connection. However, the effect of shear stress on plaque vulnerability is unknown because the lack of an appropriate in vivo model precludes cause-effect studies. METHODS AND RESULTS: We developed a perivascular shear stress modifier that induces regions of lowered, increased, and lowered/oscillatory (ie, with vortices) shear stresses in mouse carotid arteries and studied plaque formation and composition. Atherosclerotic lesions developed invariably in the regions with lowered shear stress or vortices, whereas the regions of increased shear stress were protected. Lowered shear stress lesions were larger (intima/media, 1.38+/-0.68 versus 0.22+/-0.04); contained fewer smooth muscle cells (1.9+/-1.6% versus 26.3+/-9.7%), less collagen (15.3+/-1.0% versus 22.2+/-1.0%), and more lipids (15.8+/-0.9% versus 10.2+/-0.5%); and showed more outward vascular remodeling (214+/-19% versus 117+/-9%) than did oscillatory shear stress lesions. Expression of proatherogenic inflammatory mediators and matrix metalloproteinase activity was higher in the lowered shear stress regions. Spontaneous and angiotensin II-induced intraplaque hemorrhages occurred in the lowered shear stress regions only. CONCLUSIONS: Lowered shear stress and oscillatory shear stress are both essential conditions in plaque formation. Lowered shear stress induces larger lesions with a vulnerable plaque phenotype, whereas vortices with oscillatory shear stress induce stable lesions.


Assuntos
Aterosclerose/etiologia , Artérias Carótidas/fisiopatologia , Estenose das Carótidas/fisiopatologia , Hemorreologia , Angiotensina II/farmacologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Velocidade do Fluxo Sanguíneo , Proteína C-Reativa/biossíntese , Artérias Carótidas/química , Artérias Carótidas/ultraestrutura , Estenose das Carótidas/patologia , Dieta Aterogênica , Hemorragia/etiologia , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/etiologia , Hiperlipoproteinemia Tipo II/genética , Hiperplasia , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-6/biossíntese , Lipídeos/análise , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Próteses e Implantes , Resistência ao Cisalhamento , Estresse Mecânico , Túnica Íntima/patologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
15.
Eur Heart J ; 26(20): 2200-5, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16144779

RESUMO

AIMS: Plaque rupture has been associated with a high matrix metalloproteinase (MMP) activity. Recently, regional temperature variations have been observed in atherosclerotic plaques in vivo and ascribed to the presence of macrophages. As macrophages are a major source of MMPs, we examined whether regional temperature changes are related to local MMP activity and macrophage accumulation. METHODS AND RESULTS: Plaques were experimentally induced in rabbit (n=11) aortas, and at the day of sacrifice, a pull-back was performed with a thermography catheter. Hot (n=10), cold (n=10), and reference (n=11) regions were dissected and analysed for smooth muscle cell (SMC), lipids (L), collagen (COL), and macrophage (MPhi) cell densities (%); a vulnerability index (VI) was calculated as VI=MPhi+L/(SMC+COL). In addition, accumulation and activity of MMP-2 and MMP-9 were determined with zymography. Ten hot regions were identified with an average temperature of 0.40+/-0.03 degrees C (P<0.05 vs. reference) and 10 cold regions with 0.07+/-0.03 degrees C (P<0.05 vs. hot). In the hot regions, a higher macrophage density (173%), less SMC density (77%), and a higher VI (100%) were identified. In addition, MMP-9 (673%) activity was increased. A detailed regression analysis revealed that MMP-9 predicted hot regions better than macrophage accumulation alone. CONCLUSION: In vivo temperature measurements enable to detect plaques that contain more macrophages, less SMCs, and a higher MMP-9 activity.


Assuntos
Temperatura Baixa , Temperatura Alta , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Animais , Aorta/enzimologia , Aterosclerose/enzimologia , Aterosclerose/patologia , Macrófagos/fisiologia , Masculino , Modelos Animais , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Coelhos , Termografia
16.
J Am Coll Cardiol ; 43(4): 670-7, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14975481

RESUMO

OBJECTIVES: The present study introduces a modification of the diastolic coronary conductance concept that maintains its sensitive properties to detect changes in the coronary microcirculation in human hypertrophy. BACKGROUND: Decrements of coronary flow in hypertrophy have been explained by changes in the coronary microcirculation. No measure is available to detect these changes. METHODS: Doppler velocity catheters were introduced into the left anterior descending artery (LAD) and left circumflex coronary artery (LCx) of patients with obstructive hypertrophic cardiomyopathy (HCM) (n = 11) and into the LAD of cardiac transplant recipients (n = 9). The diastolic coronary conductance was measured at rest and after maximal hyperemia induced by a bolus injection of adenosine. Diastolic coronary vasodilator reserve (DCVR) was calculated as the hyperemic diastolic coronary conductance, divided by the coronary conductance during resting conditions. RESULTS: Left ventricular outflow tract gradient in the HCM group (83 +/- 31 mm Hg) was significantly higher (p < 0.05). Septal wall thickness was significantly increased (p < 0.05), while wall thickness was unchanged in the posterior wall of the HCM group. The coronary flow reserve was significantly decreased in the HCM-LCx region (to 64 +/- 7% of control) and in the HCM-LAD regions (to 57 +/- 7% of control). The DCVR was only decreased in the HCM-LAD (to 46 +/- 3% of control) and not in the HCM-LCx group (86 +/- 6%, p > 0.05). Esmolol did affect the pressure gradient and systolic shortening, but did not affect the maximal diastolic conductance. CONCLUSIONS: The DCVR, in contrast with the coronary flow reserve, is decreased in those regions that display a disturbance in the microcirculation and may, therefore, offer a new way to study coronary adaptations in patients with hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Circulação Coronária/fisiologia , Adenosina , Antagonistas Adrenérgicos beta , Velocidade do Fluxo Sanguíneo/fisiologia , Cateterismo Cardíaco , Estimulação Cardíaca Artificial , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Estudos de Casos e Controles , Angiografia Coronária , Diástole/fisiologia , Ecocardiografia , Transplante de Coração/fisiologia , Humanos , Microcirculação/fisiologia , Pessoa de Meia-Idade , Propanolaminas , Ultrassonografia de Intervenção , Vasodilatadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA