Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191471

RESUMO

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Assuntos
Cardiomiopatias , Edição de Genes , Humanos , Camundongos , Animais , Cardiomiopatias/genética , Cardiomiopatias/terapia
3.
J Pers Med ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204946

RESUMO

The inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.

4.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339131

RESUMO

The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Proteínas de Choque Térmico HSP20/metabolismo , Miocárdio/metabolismo , Proteínas 14-3-3/metabolismo , Actinas/metabolismo , Animais , Cofilina 2/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP20/genética , Humanos , Camundongos , Mutação , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
5.
J Biol Chem ; 294(48): 18057-18068, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619520

RESUMO

Cardiac mitochondrial damage and subsequent inflammation are hallmarks of endotoxin-induced myocardial depression. Activation of the Parkin/PTEN-induced kinase 1 (PINK1) pathway has been shown to promote autophagy of damaged mitochondria (mitophagy) and to protect from endotoxin-induced cardiac dysfunction. Tumor susceptibility gene 101 (TSG101) is a key member of the endosomal recycling complexes required for transport, which may affect autophagic flux. In this study, we investigated whether TSG101 regulates mitophagy and influences the outcomes of endotoxin-induced myocardial dysfunction. TSG101 transgenic and knockdown mice underwent endotoxin/lipopolysaccharide treatment (10 µg/g) and were assessed for survival, cardiac function, systemic/local inflammation, and activity of mitophagy mediators in the heart. Upon endotoxin challenge and compared with WT mice, TSG101 transgenic mice exhibited increased survival, preserved cardiac contractile function, reduced inflammation, and enhanced mitophagy activation in the heart. By contrast, TSG101 knockdown mice displayed opposite phenotypes during endotoxemia. Mechanistically, both coimmunoprecipitation assays and coimmunofluorescence staining revealed that TSG101 directly binds to Parkin in the cytosol of myocytes and facilitates translocation of Parkin from the cytosol to the mitochondria. Our results indicate that TSG101 elevation could protect against endotoxin-triggered myocardial injury by promoting Parkin-induced mitophagy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cardiopatias/metabolismo , Lipopolissacarídeos/toxicidade , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Mitofagia/genética , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
6.
Circ Res ; 125(7): 720-724, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31513489

RESUMO

The deletion of Arginine 14 of the phosholamban gene (PLN p.R14del) is associated with the pathogenesis of an inherited form of cardiomyopathy with prominent arrhythmias. Patients carrying the PLN R14del mutation are at risk of developing dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. Although the genetic etiology is well defined, the molecular mechanism underlying the pathogenesis of PLN R14del-cardiomyopathy is unknown. Our CURE PLaN network, funded by the Foundation Leducq, will bring together leading scientists, clinicians, and patients to elucidate the genotype-phenotype relationships in R14del cardiomyopathy with the ultimate goal of developing innovative disease-specific therapeutic modalities. With the generous support of the Leducq Foundation, our Transatlantic Network of Excellence consortium to cure Phospholamban (PLN)-induced cardiomyopathy (CURE-PLaN) unites 6 leading centers to address the current challenges associated with arrhythmogenic right ventricular cardiomyopathy/dilated cardiomyopathy (DCM) with an initial focus on PLN and development of effective treatments. The Network is led by Evangelia (Litsa) Kranias (University of Cincinnati) in the United States and Pieter A. Doevendans (Netherlands Heart Institute/UMC Utrecht NL) in Europe. The other US project leaders are Kevin Costa (Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York) and Mark Mercola and Ioannis Karakikes (Stanford University), who are focusing on induced pluripotent stem cell (iPSC)-based disease models, tissue engineering, gene therapy, and drug discovery. On the European side, the project leaders are Despina Sanoudou (Biomedical Research Foundation of the Academy of Athens) analyzing the PLN interactome and Stephan Lehnart (University of Gottingen) addressing the subcellular and disrupted protein interactions affected in PLN-mutant cardiomyocytes. Other key members within the Netherlands Heart Institute are Peter van Tintelen on PLN genetics, Folkert Asselbergs on epigenetics and Rudolf de Boer on clinical trials. We are also privileged to get support from Arthur Wilde (University of Amsterdam), Sakthivel Sadayappan (University of Cincinnati), and Roger Hajjar (Phospholamban Foundation), who have had a long-standing interest in cardiac physiology and pathophysiology with emphasis on underlying pathways and potential therapeutic targets. The consortium is also fortunate to embrace a patient advocate, Pieter Glijnis, incorporating the voice of the patients to research in every step. Our goal is to build and share a platform of patient data coupled with in vitro and in vivo models to promote scientific discovery and advance novel treatments. Phospholamban is a small phosphoprotein in the cardiac sarcoplasmic reticulum, and it is the major regulator of SERCA2a activity and calcium (Ca)-cycling. Chronic inhibition of SERCA2a by PLN has been implicated in the aberrant Ca-cycling of failing hearts. Studies in HF models have shown that decreasing PLN activity may rescue cardiac remodeling and dysfunction. Several human PLN mutations, leading to inhibition of Ca-uptake into the sarcoplasmic reticulum, are linked to inherited DCM.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/terapia , Fundações/organização & administração , Terapia Genética/métodos , Pesquisa Translacional Biomédica/economia , Cardiomiopatias/genética , Fundações/economia , Terapia Genética/economia , Humanos , Cooperação Internacional , Transplante de Células-Tronco/economia , Transplante de Células-Tronco/métodos , Pesquisa Translacional Biomédica/organização & administração
7.
JACC Basic Transl Sci ; 4(2): 188-199, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31061921

RESUMO

Cardiomyocyte-specific increases in phosphorylated Hsp20 (S16D-Hsp20) to levels similar to those observed in human failing hearts are associated with early fibrotic remodeling and depressed left ventricular function, symptoms which progress to heart failure and early death. The underlying mechanisms appear to involve translocation of phosphorylated Hsp20 to the nucleus and upregulation of interleukin (IL)-6, which subsequently activates cardiac fibroblasts in a paracrine fashion through transcription factor STAT3 signaling. Accordingly, treatment of S16D-Hsp20 mice with a rat anti-mouse IL-6 receptor monoclonal antibody (MR16-1) attenuated interstitial fibrosis and preserved cardiac function. These findings suggest that phosphorylated Hsp20 may be a potential therapeutic target in heart failure.

8.
Front Physiol ; 9: 1379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319456

RESUMO

Sudden unexpected cardiac death (SCD) accounts for up to half of all-cause mortality of heart failure patients. Standardized cardiology tools such as electrocardiography, cardiac imaging, electrophysiological and serum biomarkers cannot accurately predict which patients are at risk of life-threatening arrhythmic episodes. Recently, a common variant of the histidine-rich calcium binding protein (HRC), the Ser96Ala, was identified as a potent biomarker of malignant arrhythmia triggering in these patients. HRC has been shown to be involved in the regulation of cardiac sarcoplasmic reticulum (SR) Ca2+ cycling, by binding and storing Ca2+ in the SR, as well as interacting with the SR Ca2+ uptake and release complexes. The underlying mechanisms, elucidated by studies at the molecular, biochemical, cellular and intact animal levels, indicate that transversion of Ser96 to Ala results in abolishment of an HRC phosphorylation site by Fam20C kinase and dysregulation of SR Ca2+ cycling. This is mediated through aberrant SR Ca2+ release by the ryanodine receptor (RyR2) quaternary complex, due to the impaired HRC/triadin interaction, and depressed SR Ca2+ uptake by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2) pump, due to the impaired HRC/SERCA2 interaction. Pharmacological intervention with KN-93, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), in the HRC Ser96Ala mouse model, reduced the occurrence of malignant cardiac arrhythmias. Herein, we summarize the current evidence on the pivotal role of HRC in the regulation of cardiac rhythmicity and the importance of HRC Ser96Ala as a genetic modifier for arrhythmias in the setting of heart failure.

9.
J Mol Cell Cardiol ; 114: 220-233, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169992

RESUMO

Ischemia/reperfusion injury is associated with contractile dysfunction and increased cardiomyocyte death. Overexpression of the hematopoietic lineage substrate-1-associated protein X-1 (HAX-1) has been shown to protect from cellular injury but the function of endogenous HAX-1 remains obscure due to early lethality of the knockout mouse. Herein we generated a cardiac-specific and inducible HAX-1 deficient model, which uncovered an unexpected role of HAX-1 in regulation of sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) in ischemia/reperfusion injury. Although ablation of HAX-1 in the adult heart elicited no morphological alterations under non-stress conditions, it diminished contractile recovery and increased infarct size upon ischemia/reperfusion injury. These detrimental effects were associated with increased loss of SERCA2a. Enhanced SERCA2a degradation was not due to alterations in calpain and calpastatin levels or calpain activity. Conversely, HAX-1 overexpression improved contractile recovery and maintained SERCA2a levels. The regulatory effects of HAX-1 on SERCA2a degradation were observed at multiple levels, including intact hearts, isolated cardiomyocytes and sarcoplasmic reticulum microsomes. Mechanistically, HAX-1 ablation elicited increased production of reactive oxygen species at the sarco/endoplasic reticulum compartment, resulting in SERCA2a oxidation and a predisposition to its proteolysis. This effect may be mediated by NAPDH oxidase 4 (NOX4), a novel binding partner of HAX-1. Accordingly, NOX inhibition with apocynin abrogated the effects of HAX-1 ablation in hearts subjected to ischemia/reperfusion injury. Taken together, our findings reveal a role of HAX-1 in the regulation of oxidative stress and SERCA2a degradation, implicating its importance in calcium homeostasis and cell survival pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas/metabolismo , Proteólise , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Animais , Calpaína/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Retículo Sarcoplasmático/metabolismo
10.
Autophagy ; 14(1): 80-97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29157081

RESUMO

HSPB6/Hsp20 (heat shock protein family B [small] member 6) has emerged as a novel cardioprotector against stress-induced injury. We identified a human mutant of HSPB6 (HSPB6S10F) exclusively present in dilated cardiomyopathy (DCM) patients. Cardiac expression of this mutant in mouse hearts resulted in remodeling and dysfunction, which progressed to heart failure and early death. These detrimental effects were associated with reduced interaction of mutant HSPB6S10F with BECN1/Beclin 1, leading to BECN1 ubiquitination and its proteosomal degradation. As a result, autophagy flux was substantially inhibited and apoptosis was increased in HSPB6S10F-mutant hearts. In contrast, overexpression of wild-type HSPB6 (HSPB6 WT) not only increased BECN1 levels, but also competitively suppressed binding of BECN1 to BCL2, resulting in stimulated autophagy. Indeed, preinhibition of autophagy attenuated the cardioprotective effects of HSPB6 WT. Taken together, these findings reveal a new regulatory mechanism of HSPB6 in cell survival through its interaction with BECN1. Furthermore, Ser10 appears to be crucial for the protective effects of HSPB6 and transversion of this amino acid to Phe contributes to cardiomyopathy.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Cardiomiopatia Dilatada , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitinação
11.
J Am Coll Cardiol ; 70(14): 1744-1756, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28958332

RESUMO

BACKGROUND: Increased protein phosphatase-1 in heart failure (HF) induces molecular changes deleterious to the cardiac cell. Inhibiting protein phosphatase-1 through the overexpression of a constitutively active inhibitor-1 (I-1c) has been shown to reverse cardiac dysfunction in a model of ischemic HF. OBJECTIVES: This study sought to determine the therapeutic efficacy of a re-engineered adenoassociated viral vector carrying I-1c (BNP116.I-1c) in a preclinical model of nonischemic HF, and to assess thoroughly the safety of BNP116.I-1c gene therapy. METHODS: Volume-overload HF was created in Yorkshire swine by inducing severe mitral regurgitation. One month after mitral regurgitation induction, pigs were randomized to intracoronary delivery of either BNP116.I-1c (n = 6) or saline (n = 7). Therapeutic efficacy and safety were evaluated 2 months after gene delivery. Additionally, 24 naive pigs received different doses of BNP116.I-1c for safety evaluation. RESULTS: At 1 month after mitral regurgitation induction, pigs developed HF as evidenced by increased left ventricular end-diastolic pressure and left ventricular volume indexes. Treatment with BNP116.I-1c resulted in improved left ventricular ejection fraction (-5.9 ± 4.2% vs. 5.5 ± 4.0%; p < 0.001) and adjusted dP/dt maximum (-3.39 ± 2.44 s-1 vs. 1.30 ± 2.39 s-1; p = 0.007). Moreover, BNP116.I-1c-treated pigs also exhibited a significant increase in left atrial ejection fraction at 2 months after gene delivery (-4.3 ± 3.1% vs. 7.5 ± 3.1%; p = 0.02). In vitro I-1c gene transfer in isolated left atrial myocytes from both pigs and rats increased calcium transient amplitude, consistent with its positive impact on left atrial contraction. We found no evidence of adverse electrical remodeling, arrhythmogenicity, activation of a cellular immune response, or off-target organ damage by BNP116.I-1c gene therapy in pigs. CONCLUSIONS: Intracoronary delivery of BNP116.I-1c was safe and improved contractility of the left ventricle and atrium in a large animal model of nonischemic HF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Proteína Fosfatase 1 , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Monitoramento de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Terapia Genética/métodos , Vetores Genéticos/farmacologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Suínos , Resultado do Tratamento
12.
Proc Natl Acad Sci U S A ; 114(34): 9098-9103, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784772

RESUMO

Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores. Histidine-rich Ca-binding protein (HRC) resides in the lumen of the SR, where it contributes to the regulation of Ca cycling by protecting stressed or failing hearts. The common Ser96Ala human genetic variant of HRC strongly correlates with life-threatening ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. However, the underlying molecular pathways of this disease remain undefined. Here, we demonstrate that family with sequence similarity 20C (Fam20C), a recently characterized protein kinase in the secretory pathway, phosphorylates HRC on Ser96. HRC Ser96 phosphorylation was confirmed in cells and human hearts. Furthermore, a Ser96Asp HRC variant, which mimics constitutive phosphorylation of Ser96, diminished delayed aftercontractions in HRC null cardiac myocytes. This HRC phosphomimetic variant was also able to rescue the aftercontractions elicited by the Ser96Ala variant, demonstrating that phosphorylation of Ser96 is critical for the cardioprotective function of HRC. Phosphorylation of HRC on Ser96 regulated the interactions of HRC with both triadin and SERCA2a, suggesting a unique mechanism for regulation of SR Ca homeostasis. This demonstration of the role of Fam20C-dependent phosphorylation in heart disease will open new avenues for potential therapeutic approaches against arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Proteínas de Ligação ao Cálcio/genética , Caseína Quinase I/genética , Linhagem Celular Tumoral , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Serina/genética , Serina/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(47): E6466-75, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553996

RESUMO

The major underpinning of massive cell death associated with myocardial infarction involves opening of the mitochondrial permeability transition pore (mPTP), resulting in disruption of mitochondria membrane integrity and programmed necrosis. Studies in human lymphocytes suggested that the hematopoietic-substrate-1 associated protein X-1 (HAX-1) is linked to regulation of mitochondrial membrane function, but its role in controlling mPTP activity remains obscure. Herein we used models with altered HAX-1 expression levels in the heart and uncovered an unexpected role of HAX-1 in regulation of mPTP and cardiomyocyte survival. Cardiac-specific HAX-1 overexpression was associated with resistance against loss of mitochondrial membrane potential, induced by oxidative stress, whereas HAX-1 heterozygous deficiency exacerbated vulnerability. The protective effects of HAX-1 were attributed to specific down-regulation of cyclophilin-D levels leading to reduction in mPTP activation. Accordingly, cyclophilin-D and mPTP were increased in heterozygous hearts, but genetic ablation of cyclophilin-D in these hearts significantly alleviated their susceptibility to ischemia/reperfusion injury. Mechanistically, alterations in cyclophilin-D levels by HAX-1 were contributed by the ubiquitin-proteosomal degradation pathway. HAX-1 overexpression enhanced cyclophilin-D ubiquitination, whereas proteosomal inhibition restored cyclophilin-D levels. The regulatory effects of HAX-1 were mediated through interference of cyclophilin-D binding to heat shock protein-90 (Hsp90) in mitochondria, rendering it susceptible to degradation. Accordingly, enhanced Hsp90 expression in HAX-1 overexpressing cardiomyocytes increased cyclophilin-D levels, as well as mPTP activation upon oxidative stress. Taken together, our findings reveal the role of HAX-1 in regulating cyclophilin-D levels via an Hsp90-dependent mechanism, resulting in protection against activation of mPTP and subsequent cell death responses.


Assuntos
Ciclofilinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miocárdio/metabolismo , Proteínas/metabolismo , Adenoviridae/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Peptidil-Prolil Isomerase F , Proteínas de Choque Térmico HSP90/metabolismo , Heterozigoto , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ligação Proteica , Transporte Proteico , Proteólise , Ratos Sprague-Dawley , Ubiquitinação
14.
Cardiovasc Res ; 107(1): 164-74, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852082

RESUMO

AIMS: Depressed sarcoplasmic reticulum (SR) Ca(2+) cycling, a universal characteristic of human and experimental heart failure, may be associated with genetic alterations in key Ca(2+)-handling proteins. In this study, we identified a novel PLN mutation (R25C) in dilated cardiomyopathy (DCM) and investigated its functional significance in cardiomyocyte Ca(2+)-handling and contractility. METHODS AND RESULTS: Exome sequencing identified a C73T substitution in the coding region of PLN in a family with DCM. The four heterozygous family members had implantable cardiac defibrillators, and three developed prominent ventricular arrhythmias. Overexpression of R25C-PLN in adult rat cardiomyocytes significantly suppressed the Ca(2+) affinity of SR Ca(2+)-ATPase (SERCA2a), resulting in decreased SR Ca(2+) content, Ca(2+) transients, and impaired contractile function, compared with WT-PLN. These inhibitory effects were associated with enhanced interaction of R25C-PLN with SERCA2, which was prevented by PKA phosphorylation. Accordingly, isoproterenol stimulation relieved the depressive effects of R25C-PLN in cardiomyocytes. However, R25C-PLN also elicited increases in the frequency of Ca(2+) sparks and waves as well as stress-induced aftercontractions. This was accompanied by increased Ca(2+)/calmodulin-dependent protein kinase II activity and hyper-phosphorylation of RyR2 at serine 2814. CONCLUSION: The findings demonstrate that human R25C-PLN is associated with super-inhibition of SERCA2a and Ca(2+) transport as well as increased SR Ca(2+) leak, promoting arrhythmogenesis under stress conditions. This is the first mechanistic evidence that increased PLN inhibition may impact both SR Ca(2+) uptake and Ca(2+) release activities and suggests that the human R25C-PLN may be a prognostic factor for increased ventricular arrhythmia risk in DCM carriers.


Assuntos
Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mutação , Idoso , Animais , Cardiomiopatia Dilatada/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Nat Commun ; 6: 6955, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25923014

RESUMO

A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca(2+) handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Reparo Gênico Alvo-Dirigido , Adenoviridae , Adulto , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Desoxirribonucleases , Feminino , Técnicas de Transferência de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Fenótipo , Deleção de Sequência
16.
Mol Ther ; 22(12): 2038-2045, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25023328

RESUMO

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


Assuntos
Dependovirus/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Proteína Fosfatase 1/genética , Animais , Dependovirus/classificação , Dependovirus/enzimologia , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Injeções Intra-Arteriais , Proteína Fosfatase 1/metabolismo , Volume Sistólico , Suínos
17.
FEBS J ; 281(14): 3261-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24860983

RESUMO

Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.


Assuntos
Actinas/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Músculo Estriado/citologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Proteínas com Domínio LIM/sangue , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Camundongos , Desenvolvimento Muscular , Proteínas Musculares/sangue , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mioblastos/fisiologia , Doenças Neuromusculares/fisiopatologia , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
18.
PLoS One ; 8(12): e80717, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312496

RESUMO

Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.


Assuntos
Envelhecimento/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Proteínas/metabolismo , Remodelação Ventricular , Envelhecimento/genética , Envelhecimento/patologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Fosforilação/genética , Proteínas/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
19.
PLoS One ; 8(11): e80867, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244723

RESUMO

In human and experimental heart failure, the activity of the type 1 phosphatase is significantly increased, associated with dephosphorylation of phospholamban, inhibition of the sarco(endo)plasmic reticulum Ca(2+) transport ATPase (SERCA2a) and depressed function. In the current study, we investigated the molecular mechanisms controlling protein phosphatase-1 activity. Using recombinant proteins and complementary in vitro binding studies, we identified a multi-protein complex centered on protein phosphatase-1 that includes its muscle specific glycogen-targeting subunit GM and substrate phospholamban. GM interacts directly with phospholamban and this association is mediated by the cytosolic regions of the proteins. Our findings suggest the involvement of GM in mediating formation of the phosphatase-1/GM/phospholamban complex through the direct and independent interactions of GM with both protein phosphatase-1 and phospholamban. Importantly, the protein phosphatase-1/GM/phospholamban complex dissociates upon protein kinase A phosphorylation, indicating its significance in the ß-adrenergic signalling axis. Moreover, protein phosphatase-1 activity is regulated by two binding partners, inhibitor-1 and the small heat shock protein 20, Hsp20. Indeed, human genetic variants of inhibitor-1 (G147D) or Hsp20 (P20L) result in reduced binding and inhibition of protein phosphatase-1, suggesting aberrant enzymatic regulation in human carriers. These findings provide insights into the mechanisms underlying fine-tuned regulation of protein phosphatase-1 and its impact on the SERCA2/phospholamban interactome in cardiac function.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteína Fosfatase 1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Fosforilação
20.
Antioxid Redox Signal ; 19(11): 1185-97, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23919584

RESUMO

AIMS: Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS: Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted ß-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION: HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS: PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.


Assuntos
Antioxidantes/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Óxidos de Nitrogênio/farmacologia , Multimerização Proteica/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cardiotônicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dissulfetos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microssomos/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA