Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(9): e2400415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246130

RESUMO

In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Técnicas de Inativação de Genes , Fator de Transcrição STAT1 , Humanos , Dependovirus/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células HEK293 , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
2.
Biotechnol Lett ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259435

RESUMO

The efficiency of triple-plasmid transfection in recombinant Adeno-Associated Virus (rAAV) production was analyzed by examining two distinct HEK-293 cells lines. These were categorized as high producer (HP) and low producer (LP) based on their differing levels of productivity under identical conditions. Analysis of RNA expression levels of viral genes revealed disparities in plasmid derived gene expression between the cell lines. Further assessment of transfection efficiency utilizing labeled plasmids revealed lower plasmid uptake and less efficient nuclear transport in LP cell line. Additionally, we observed inferior translation activity in LP, contributing to its shortcomings in overall productivity. In our attempt to optimize plasmid ratios to enhance fully packaged rAAV particle yield, we discovered cell-line-specific optimization potential. The findings highlight the transfection's complexity, urging tailored strategies for improved rAAV production based on each cell line's characteristics, enhancing understanding and guiding further efficiency optimization in rAAV production.

3.
J Biotechnol ; 393: 128-139, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39106910

RESUMO

Recombinant adeno-associated virus (rAAV) is the most widely used viral vector for in vivo human gene therapy. To ensure safety and efficacy of gene therapy products, a comprehensive analytical profile of the rAAVs is needed, which provides crucial information for therapeutic development and manufacturing. Besides information on rAAV quantities and possible contaminating DNA and protein species, assessing rAAV quality is of utmost importance. In vitro biopotency and methods to determine the full/empty ratio of rAAV capsids are commonly applied, but methods to assess the integrity of the viral genome are still rarely used. Here we describe an orthogonal approach to characterize rAAV quality. Two biologically different rAAV9s from different stages of the bioprocess, generated each with two different transfection reagents, were investigated. In vitro biopotency tests in all cases demonstrated that rAAV9s generated with transfection reagent FectoVIR® possessed a higher biological activity. Mass-based analytical methods, such as sedimentation velocity analytical ultracentrifugation (AUC) and mass photometry, showed a high share of full capsids (>80 %) at late process stages but did not detect any differences in the rAAV9s from the different transfection reagents. Multiplex dPCR and Nanopore long-read sequencing both demonstrated that, also in late-stage process samples, sample heterogeneity was relatively high with a rather small share of full-length transgenes of ∼10-40 %. Intriguingly, both methods detected a higher share of complete transgenes in rAAV9 generated with transfection reagent FectoVIR® instead of Polyethylenimine (PEI), and thereby explain the differences already observed in the biopotency assays. This study therefore emphasizes the necessity to utilize multiple, orthogonal methods to gain a better understanding of recombinantly manufactured AAVs.


Assuntos
Dependovirus , Vetores Genéticos , Transgenes , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Células HEK293 , Transfecção/métodos , Genoma Viral/genética , Terapia Genética/métodos
4.
Biotechnol J ; 19(5): e2300672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719621

RESUMO

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Assuntos
Dependovirus , Interferons , Transdução de Sinais , Humanos , Células HEK293 , Dependovirus/genética , Interferons/metabolismo , Interferons/genética , Nitrilas/farmacologia , Pirimidinas/farmacologia , Transfecção , Pirazóis/farmacologia
5.
Biotechnol J ; 18(7): e2200636, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129529

RESUMO

Over the past decades, virus-like particle (VLP)-based gene therapy (GT) evolved as a promising approach to cure inherited diseases or cancer. Tremendous costs due to inefficient production processes remain one of the key challenges despite considerable efforts to improve titers. This review aims to link genome-scale metabolic models (GSMMs) to cell lines used for VLP synthesis for the first time. We summarize recent advances and challenges of GSMMs for Chinese hamster ovary (CHO) cells and provide an overview of potential cell lines used in GT. Although GSMMs in CHO cells led to significant improvements in growth rates and recombinant protein (RP)-production, no GSMM has been established for VLP production so far. To facilitate the generation of GSMM for these cell lines we further provide an overview of existing omics data and the highest production titers so far reported.


Assuntos
Cricetulus , Cricetinae , Animais , Células CHO , Proteínas Recombinantes/metabolismo , Simulação por Computador
6.
Biotechnol J ; 18(8): e2200513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191240

RESUMO

Human embryonal kidney cells (HEK-293) are the most common host cells used for transient recombinant adeno-associated virus (rAAV) production in pharmaceutical industry. To better cover the expected gene therapy product demands in the future, different traditional strategies such as cell line sub-cloning and/or addition of chemical substances to the fermentation media have been used to maximize titers and improve product quality. A more effective and advanced approach to boost yield can be envisaged by characterizing the transcriptome of different HEK-293 cell line pedigrees with distinct rAAV productivity patterns to subsequently identify potential gene targets for cell engineering. In this work, the mRNA expression profile of three HEK-293 cell lines, resulting in various yields during a fermentation batch process for rAAV production, was investigated to gain basic insight into cell variability and eventually to identify genes that correlate with productivity. Mock runs using only transfection reagents were performed in parallel as a control. It finds significant differences in gene regulatory behaviors between the three cell lines at different growth and production stages. The evaluation of these transcriptomics profiles combined with collected in-process control parameters and titers shed some light on potential cell engineering targets to maximize transient production of rAAV in HEK-293 cells.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Terapia Genética/métodos , RNA Mensageiro
7.
PLoS One ; 17(6): e0269139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657790

RESUMO

In spite of continuous development of gene therapy vectors with thousands of drug candidates in clinical drug trials there are only a small number approved on the market today stressing the need to have characterization methods to assist in the validation of the drug development process. The level of packaging of the vector capsids appears to play a critical role in immunogenicity, hence an objective quantitative method assessing the content of particles containing a genome is an essential quality measurement. As transmission electron microscopy (TEM) allows direct visualization of the particles present in a specimen, it naturally seems as the most intuitive method of choice for characterizing recombinant adeno-associated virus (rAAV) particle packaging. Negative stain TEM (nsTEM) is an established characterization method for analysing the packaging of viral vectors. It has however shown limitations in terms of reliability. To overcome this drawback, we propose an analytical method based on CryoTEM that unambiguously and robustly determines the percentage of filled particles in an rAAV sample. In addition, we show that at a fixed number of vector particles the portion of filled particles correlates well with the potency of the drug. The method has been validated according to the ICH Q2 (R1) guidelines and the components investigated during the validation are presented in this study. The reliability of nsTEM as a method for the assessment of filled particles is also investigated along with a discussion about the origin of the observed variability of this method.


Assuntos
Dependovirus , Terapia Genética , Capsídeo , Dependovirus/genética , Vetores Genéticos/genética , Reprodutibilidade dos Testes
8.
Biotechnol Lett ; 44(1): 77-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767126

RESUMO

OBJECTIVES: The applicability of proton-transfer-reaction mass spectrometry (PTR-MS) as a versatile online monitoring tool to increase consistency and robustness for recombinant adeno-associated virus (rAAV) producing HEK 293 bioprocesses was evaluated. We present a structured workflow to extract process relevant information from PTR-MS data. RESULTS: Reproducibility of volatile organic compound (VOC) measurements was demonstrated with spiking experiments and the process data sets used for applicability evaluation consisted of HEK 293 cell culture triplicates with and without transfection. The developed data workflow enabled the identification of six VOCs, of which two were used to develop a soft sensor providing better real-time estimates than the conventional capacitance sensor. Acetaldehyde, another VOC, provides online process information about glucose depletion that can directly be used for process control purposes. CONCLUSIONS: The potential of PTR-MS for HEK 293 cell culture monitoring has been shown. VOC data derived information can be used to develop soft sensors and to directly set up new process control strategies.


Assuntos
Prótons , Compostos Orgânicos Voláteis , Terapia Genética , Glucose , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA