Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 16(4): 567-578, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33761064

RESUMO

PURPOSE: State-of-the-art medical examination techniques (e.g., rhinomanometry and endoscopy) do not always lead to satisfactory postoperative outcome. A fully automatized optimization tool based on patient computer tomography (CT) data to calculate local pressure gradient regions to reshape pathological nasal cavity geometry is proposed. METHODS: Five anonymous pre- and postoperative CT datasets with nasal septum deviations were used to simulate the airflow through the nasal cavity with lattice Boltzmann (LB) simulations. Pressure gradient regions were detected by a streamline analysis. After shape optimization, the volumetric difference between the two shapes of the nasal cavity yields the estimated resection volume. RESULTS: At LB rhinomanometry boundary conditions (bilateral flow rate of 600 ml/s), the preliminary study shows a critical pressure gradient of -1.1 Pa/mm as optimization criterion. The maximum coronal airflow ΔA  := cross-section ratio [Formula: see text] found close to the nostrils is 1.15. For the patients a pressure drop ratio ΔΠ  := (pre-surgery - virtual surgery)/(pre-surgery - post-surgery) between nostril and nasopharynx of 1.25, 1.72, -1.85, 0.79 and 1.02 is calculated. CONCLUSIONS: LB fluid mechanics optimization of the nasal cavity can yield results similar to surgery for air-flow cross section and pressure drop between nostril and nasopharynx. The optimization is numerically stable in all five cases of the presented study. A limitation of this study is that anatomical constraints (e.g. mucosa) have not been considered.


Assuntos
Endoscopia/métodos , Cavidade Nasal/cirurgia , Septo Nasal/cirurgia , Tomografia Computadorizada por Raios X/métodos , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Cavidade Nasal/diagnóstico por imagem , Septo Nasal/diagnóstico por imagem , Estadiamento de Neoplasias , Reconhecimento Automatizado de Padrão , Período Pós-Operatório , Respiração
2.
Respir Physiol Neurobiol ; 283: 103533, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889096

RESUMO

Objective parameters to assess the physical flow conditions of breathing are scarce and decisions for surgery, e.g. nasal septum correction, mainly rely on subjective surgeon judgment. To define decision supporting parameters, we compare laser Doppler anemometry (LDA) and numerical computational fluid dynamic simulations (CFD) of the airflow velocity vector fields in the nasal cavity, including lattice Boltzmann (LB) and finite volume methods (FVM). The simulations are based on an anonymous patient CT dataset with septal deviation. LDA measurements are preformed using a 3D printed model. Nasal airflow geometry is randomly deformed in order to approximate surgical changes. The root-mean-square velocity error near the nasal valve of laser Doppler anemometry and lattice Boltzmann simulations is 0.071. Changes in geometry similarly affect both measurement and simulation.


Assuntos
Simulação por Computador , Hidrodinâmica , Fluxometria por Laser-Doppler , Cavidade Nasal/diagnóstico por imagem , Ventilação Pulmonar/fisiologia , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA