Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928097

RESUMO

Tissue hypoxia is associated with the development of organ dysfunction and death in critically ill patients commonly captured using blood lactate. The kinetic parameters of serial lactate evaluations are superior at predicting mortality compared with single values. S-adenosylhomocysteine (SAH), which is also associated with hypoxia, was recently established as a useful predictor of septic organ dysfunction and death. We evaluated the performance of kinetic SAH parameters for mortality prediction compared with lactate parameters in a cohort of critically ill patients. For lactate and SAH, maxima and means as well as the normalized area scores were calculated for two periods: the first 24 h and the total study period of up to five days following ICU admission. Their performance in predicting in-hospital mortality were compared in 99 patients. All evaluated parameters of lactate and SAH were significantly higher in non-survivors compared with survivors. In univariate analysis, the predictive power for mortality of SAH was higher compared with lactate in all forms of application. Multivariable models containing SAH parameters demonstrated higher predictive values for mortality than models based on lactate parameters. The optimal models for mortality prediction incorporated both lactate and SAH parameters. Compared with lactate, SAH displayed stronger predictive power for mortality in static and dynamic application in critically ill patients.


Assuntos
Estado Terminal , Ácido Láctico , S-Adenosil-Homocisteína , Humanos , Estado Terminal/mortalidade , Masculino , Feminino , Ácido Láctico/sangue , Pessoa de Meia-Idade , Idoso , S-Adenosil-Homocisteína/sangue , Mortalidade Hospitalar , Cinética , Prognóstico , Biomarcadores/sangue , Estudos de Coortes , Unidades de Terapia Intensiva , Adulto
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628779

RESUMO

A common final pathway of pathogenetic mechanisms in septic organ dysfunction and death is a lack or non-utilization of oxygen. Plasma concentrations of lactate serve as surrogates for the oxygen-deficiency-induced imbalance between energy supply and demand. As S-adenosylhomocysteine (SAH) was shown to reflect tissue hypoxia, we compared the ability of SAH versus lactate to predict the progression of inflammatory and septic disease to septic organ dysfunction and death. Using univariate and multiple logistic regression, we found that SAH but not lactate, taken upon patients' inclusion in the study close to ICU admission, significantly and independently contributed to the prediction of disease progression and death. Due to the stronger increase in SAH in relation to S-adenosylmethionine (SAM), the ratio of SAM to SAH, representing methylation potential, was significantly decreased in patients with septic organ dysfunction and non-survivors compared with SIRS/sepsis patients (2.8 (IQR 2.3-3.9) vs. 8.8 (4.9-13.8); p = 0.003) or survivors (4.9 (2.8-9.5) vs. 8.9 (5.1-14.3); p = 0.026), respectively. Thus, SAH appears to be a better contributor to the prediction of septic organ dysfunction and death than lactate in critically ill patients. As SAH is a potent inhibitor of SAM-dependent methyltransferases involved in numerous vital biochemical processes, the impairment of the SAM-to-SAH ratio in severely critically ill septic patients and non-survivors warrants further studies on the pathogenetic role of SAH in septic multiple organ failure.


Assuntos
Estado Terminal , S-Adenosil-Homocisteína , Humanos , Insuficiência de Múltiplos Órgãos , Estudos Prospectivos , Ácido Láctico , Hipóxia , Oxigênio , S-Adenosilmetionina , Progressão da Doença
3.
Eur J Anaesthesiol ; 40(11): 817-825, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37649211

RESUMO

BACKGROUND: The Trendelenburg position with pneumoperitoneum during surgery promotes dorsobasal atelectasis formation, which impairs respiratory mechanics and increases lung stress and strain. Positive end-expiratory pressure (PEEP) can reduce pulmonary inhomogeneities and preserve end-expiratory lung volume (EELV), resulting in decreased inspiratory strain and improved gas-exchange. The optimal intraoperative PEEP strategy is unclear. OBJECTIVES: To compare the effects of individualised PEEP titration strategies on set PEEP levels and resulting transpulmonary pressures, respiratory mechanics, gas-exchange and haemodynamics during Trendelenburg position with pneumoperitoneum. DESIGN: Prospective, randomised, crossover single-centre physiologic trial. SETTING: University hospital. PATIENTS: Thirty-six patients receiving robot-assisted laparoscopic radical prostatectomy. INTERVENTIONS: Randomised sequence of three different PEEP strategies: standard PEEP level of 5 cmH 2 O (PEEP 5 ), PEEP titration targeting a minimal driving pressure (PEEP ΔP ) and oesophageal pressure-guided PEEP titration (PEEP Poeso ) targeting an end-expiratory transpulmonary pressure ( PTP ) of 0 cmH 2 O. MAIN OUTCOME MEASURES: The primary endpoint was the PEEP level when set according to PEEP ΔP and PEEP Poeso compared with PEEP of 5 cmH 2 O. Secondary endpoints were respiratory mechanics, lung volumes, gas-exchange and haemodynamic parameters. RESULTS: PEEP levels differed between PEEP ΔP , PEEP Poeso and PEEP5 (18.0 [16.0 to 18.0] vs. 20.0 [18.0 to 24.0]vs. 5.0 [5.0 to 5.0] cmH 2 O; P  < 0.001 each). End-expiratory PTP and lung volume were lower in PEEP ΔP compared with PEEP Poeso ( P  = 0.014 and P  < 0.001, respectively), but driving pressure, lung stress, as well as respiratory system and dynamic elastic power were minimised using PEEP ΔP ( P  < 0.001 each). PEEP ΔP and PEEP Poeso improved gas-exchange, but PEEP Poeso resulted in lower cardiac output compared with PEEP 5 and PEEP ΔP . CONCLUSION: PEEP ΔP ameliorated the effects of Trendelenburg position with pneumoperitoneum during surgery on end-expiratory PTP and lung volume, decreased driving pressure and dynamic elastic power, as well as improved gas-exchange while preserving cardiac output. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00028559, date of registration 2022/04/27). https://drks.de/search/en/trial/DRKS00028559.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Pneumoperitônio , Masculino , Humanos , Estudos Prospectivos , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Hemodinâmica
4.
Anesthesiology ; 139(3): 249-261, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224406

RESUMO

BACKGROUND: Superobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients. METHODS: In this prospective, nonrandomized crossover study including 40 superobese patients (body mass index 57.3 ± 6.4 kg/m2) undergoing laparoscopic bariatric surgery, PEEP was set according to (1) a fixed level of 8 cm H2O (PEEPEmpirical), (2) the highest respiratory system compliance (PEEPCompliance), or (3) an end-expiratory transpulmonary pressure targeting 0 cm H2O (PEEPTranspul) at different surgical positioning. The primary endpoint was end-expiratory transpulmonary pressure at different surgical positioning; secondary endpoints were respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters. RESULTS: Individualized PEEPCompliance compared to fixed PEEPEmpirical resulted in higher PEEP (supine, 17.2 ± 2.4 vs. 8.0 ± 0.0 cm H2O; supine with pneumoperitoneum, 21.5 ± 2.5 vs. 8.0 ± 0.0 cm H2O; and beach chair with pneumoperitoneum; 15.8 ± 2.5 vs. 8.0 ± 0.0 cm H2O; P < 0.001 each) and less negative end-expiratory transpulmonary pressure (supine, -2.9 ± 2.0 vs. -10.6 ± 2.6 cm H2O; supine with pneumoperitoneum, -2.9 ± 2.0 vs. -14.1 ± 3.7 cm H2O; and beach chair with pneumoperitoneum, -2.8 ± 2.2 vs. -9.2 ± 3.7 cm H2O; P < 0.001 each). Titrated PEEP, end-expiratory transpulmonary pressure, and lung volume were lower with PEEPCompliance compared to PEEPTranspul (P < 0.001 each). Respiratory system and transpulmonary driving pressure and mechanical power normalized to respiratory system compliance were reduced using PEEPCompliance compared to PEEPTranspul. CONCLUSIONS: In superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output.


Assuntos
Laparoscopia , Pneumoperitônio , Humanos , Estudos Cross-Over , Estudos Prospectivos , Respiração com Pressão Positiva , Mecânica Respiratória , Volume de Ventilação Pulmonar
5.
J Intensive Care ; 10(1): 12, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256012

RESUMO

BACKGROUND: Even an ultraprotective ventilation strategy in severe acute respiratory distress syndrome (ARDS) patients treated with extracorporeal membrane oxygenation (ECMO) might induce ventilator-induced lung injury and apneic ventilation with the sole application of positive end-expiratory pressure may, therefore, be an alternative ventilation strategy. We, therefore, compared the effects of ultraprotective ventilation with apneic ventilation on oxygenation, oxygen delivery, respiratory system mechanics, hemodynamics, strain, air distribution and recruitment of the lung parenchyma in ARDS patients with ECMO. METHODS: In a prospective, monocentric physiological study, 24 patients with severe ARDS managed with ECMO were ventilated using ultraprotective ventilation (tidal volume 3 ml/kg of predicted body weight) with a fraction of inspired oxygen (FiO2) of 21%, 50% and 90%. Patients were then treated with apneic ventilation with analogous FiO2. The primary endpoint was the effect of the ventilation strategy on oxygenation and oxygen delivery. The secondary endpoints were mechanical power, stress, regional air distribution, lung recruitment and the resulting strain, evaluated by chest computed tomography, associated with the application of PEEP (apneic ventilation) and/or low VT (ultraprotective ventilation). RESULTS: Protective ventilation, compared to apneic ventilation, improved oxygenation (arterial partial pressure of oxygen, p < 0.001 with FiO2 of 50% and 90%) and reduced cardiac output. Both ventilation strategies preserved oxygen delivery independent of the FiO2. Protective ventilation increased driving pressure, stress, strain, mechanical power, as well as induced additional recruitment in the non-dependent lung compared to apneic ventilation. CONCLUSIONS: In patients with severe ARDS managed with ECMO, ultraprotective ventilation compared to apneic ventilation improved oxygenation, but increased stress, strain, and mechanical power. Apneic ventilation might be considered as one of the options in the initial phase of ECMO treatment in severe ARDS patients to facilitate lung rest and prevent ventilator-induced lung injury. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00013967). Registered 02/09/2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013967 .

6.
Ann Intensive Care ; 11(1): 101, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34213674

RESUMO

BACKGROUND: We tested the effect of different blood flow levels in the extracorporeal circuit on the measurements of cardiac stroke volume (SV), global end-diastolic volume index (GEDVI) and extravascular lung water index derived from transpulmonary thermodilution (TPTD) in 20 patients with severe acute respiratory distress syndrome (ARDS) treated with veno-venous extracorporeal membrane oxygenation (ECMO). METHODS: Comparative SV measurements with transesophageal echocardiography and TPTD were performed at least 5 times during the treatment of the patients. The data were interpreted with a Bland-Altman analysis corrected for repeated measurements. The interchangeability between both measurement modalities was calculated and the effects of extracorporeal blood flow on SV measurements with TPTD was analysed with a linear mixed effect model. GEDVI and EVLWI measurements were performed immediately before the termination of the ECMO therapy at a blood flow of 6 l/min, 4 l/min and 2 l/min and after the disconnection of the circuit in 7 patients. RESULTS: 170 pairs of comparative SV measurements were analysed. Average difference between the two modalities (bias) was 0.28 ml with an upper level of agreement of 40 ml and a lower level of agreement of -39 ml within a 95% confidence interval and an overall interchangeability rate between TPTD and Echo of 64%. ECMO blood flow did not influence the mean bias between Echo and TPTD (0.03 ml per l/min of ECMO blood flow; p = 0.992; CI - 6.74 to 6.81). GEDVI measurement was not significantly influenced by the blood flow in the ECMO circuit, whereas EVLWI differed at a blood flow of 6 l/min compared to no ECMO flow (25.9 ± 10.1 vs. 11.0 ± 4.2 ml/kg, p = 0.0035). CONCLUSIONS: Irrespectively of an established ECMO therapy, comparative SV measurements with Echo and TPTD are not interchangeable. Such caveats also apply to the interpretation of EVLWI, especially with a high blood flow in the extracorporeal circulation. In such situations, the clinician should rely on other methods of evaluation of the amount of lung oedema with the haemodynamic situation, vasopressor support and cumulative fluid balance in mind. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00021050). Registered 03/30/2020 https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017237.

7.
Eur J Obstet Gynecol Reprod Biol ; 229: 98-102, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30144729

RESUMO

OBJECTIVE: Most data support the fact that women with symptomatic pelvic organ prolapse (POP) with concomitant symptomatic or occult stress urinary incontinence (SUI) benefit from concurrent POP and anti-incontinence procedure. However some data support a delayed or 2-step approach. The aim of this study was to demonstrate the effectiveness and safety of laparoscopic sacrocolpopexy (SCP) alone with a delayed approach for SUI to prove the justification of a 2-step approach. STUDY DESIGN: A prospective study from 2014 to 2016 including women with symptomatic POP ≥ stage 2 prolapse and concomitant SUI or occult SUI. Laparoscopic SCP for apical or multi-compartment POP with or without concomitant MUS insertion was performed. Primary outcome measures were asymptomatic regarding SUI after prolapse surgery alone, persisting SUI with or without subsequent anti-incontinence surgery. RESULTS: A SCP alone was performed on 62 women. Stress urinary incontinence was seen in 31% with SCP alone and a third of those women needed an additional midurethral sling for persisting SUI. Women who chose a combined surgery for POP and incontinence with SCP and a suburethral sling the postoperative success rate regarding SUI was 100% with two women needing a sling release. CONCLUSION: We showed that women with POP with concomitant stress urinary incontinence undergoing sacrocolpopexy benefitted from a two-step approach as only 11% needed an additional incontinence procedure. This study highlights the importance of pre-operative counselling. It should be tailored to the individual woman.


Assuntos
Procedimentos Cirúrgicos em Ginecologia , Prolapso de Órgão Pélvico/cirurgia , Incontinência Urinária por Estresse/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Laparoscopia , Pessoa de Meia-Idade , Estudos Prospectivos , Slings Suburetrais
8.
Crit Care ; 18(2): R59, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24693992

RESUMO

INTRODUCTION: The ideal ventilation strategy for patients with massive brain damage requires better elucidation. We hypothesized that in the presence of massive brain injury, a ventilation strategy using low (6 milliliters per kilogram ideal body weight) tidal volume (V(T)) ventilation with open lung positive end-expiratory pressure (LV(T)/OLPEEP) set according to the minimal static elastance of the respiratory system, attenuates the impact of massive brain damage on gas-exchange, respiratory mechanics, lung histology and whole genome alterations compared with high (12 milliliters per kilogram ideal body weight) V(T) and low positive end-expiratory pressure ventilation (HV(T)/LPEEP). METHODS: In total, 28 adult male Wistar rats were randomly assigned to one of four groups: 1) no brain damage (NBD) with LV(T)/OLPEEP; 2) NBD with HV(T)/LPEEP; 3) brain damage (BD) with LV(T)/OLPEEP; and 4) BD with HV9T)/LPEEP. All animals were mechanically ventilated for six hours. Brain damage was induced by an inflated balloon catheter into the epidural space. Hemodynamics was recorded and blood gas analysis was performed hourly. At the end of the experiment, respiratory system mechanics and lung histology were analyzed. Genome wide gene expression profiling and subsequent confirmatory quantitative polymerase chain reaction (qPCR) for selected genes were performed. RESULTS: In NBD, both LV(T)/OLPEEP and HV(T)/LPEEP did not affect arterial blood gases, as well as whole genome expression changes and real-time qPCR. In BD, LVT/OLPEEP, compared to HV(T)/LPEEP, improved oxygenation, reduced lung damage according to histology, genome analysis and real-time qPCR with decreased interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant 1 (CINC)-1 and angiopoietin-4 expressions. LV(T)/OLPEEP compared to HV(T)/LPEEP improved overall survival. CONCLUSIONS: In BD, LV(T)/OLPEEP minimizes lung morpho-functional changes and inflammation compared to HV(T)/LPEEP.


Assuntos
Lesões Encefálicas/terapia , Lesão Pulmonar/prevenção & controle , Respiração com Pressão Positiva/métodos , Volume de Ventilação Pulmonar/fisiologia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesão Pulmonar/fisiopatologia , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia
9.
Crit Care ; 14(5): R183, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20946631

RESUMO

INTRODUCTION: To test the hypothesis that open lung (OL) ventilatory strategies using high-frequency oscillatory ventilation (HFOV) or controlled mechanical ventilation (CMV) compared to CMV with lower positive end-expiratory pressure (PEEP) improve respiratory function while minimizing lung injury as well as systemic inflammation, a prospective randomized study was performed at a university animal laboratory using three different lung conditions. METHODS: Seventy-eight adult male Wistar rats were randomly assigned to three groups: (1) uninjured (UI), (2) saline washout (SW), and (3) intraperitoneal/intravenous Escherichia coli lipopolysaccharide (LPS)-induced lung injury. Within each group, animals were further randomized to (1) OL with HFOV, (2) OL with CMV with "best" PEEP set according to the minimal static elastance of the respiratory system (BP-CMV), and (3) CMV with low PEEP (LP-CMV). They were then ventilated for 6 hours. HFOV was set with mean airway pressure (PmeanHFOV) at 2 cm H2O above the mean airway pressure recorded at BP-CMV (PmeanBP-CMV) following a recruitment manoeuvre. Six animals served as unventilated controls (C). Gas-exchange, respiratory system mechanics, lung histology, plasma cytokines, as well as cytokines and types I and III procollagen (PCI and PCIII) mRNA expression in lung tissue were measured. RESULTS: We found that (1) in both SW and LPS, HFOV and BP-CMV improved gas exchange and mechanics with lower lung injury compared to LP-CMV, (2) in SW; HFOV yielded better oxygenation than BP-CMV; (3) in SW, interleukin (IL)-6 mRNA expression was lower during BP-CMV and HFOV compared to LP-CMV, while in LPS inflammatory response was independent of the ventilatory mode; and (4) PCIII mRNA expression decreased in all groups and ventilatory modes, with the decrease being highest in LPS. CONCLUSIONS: Open lung ventilatory strategies associated with HFOV or BP-CMV improved respiratory function and minimized lung injury compared to LP-CMV. Therefore, HFOV with PmeanHFOV set 2 cm H2O above the PmeanBP-CMV following a recruitment manoeuvre is as beneficial as BP-CMV.


Assuntos
Ventilação de Alta Frequência/métodos , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Respiração Artificial/métodos , Volume de Ventilação Pulmonar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA