Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 27(10): 1621-34, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27009205

RESUMO

Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV-membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.


Assuntos
Queratina-20/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas SNARE/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Transporte Proteico , Uroplaquinas/genética , Uroplaquinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
2.
PLoS One ; 9(6): e99644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914955

RESUMO

Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but 'softened') membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation.


Assuntos
Diferenciação Celular , Corpos Multivesiculares/metabolismo , Nexinas de Classificação/metabolismo , Uroplaquinas/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Biomarcadores/metabolismo , Bovinos , Membrana Celular/metabolismo , Cães , Endocitose , Endossomos/metabolismo , Técnicas de Inativação de Genes , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Corpos Multivesiculares/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Ultracentrifugação , Urotélio/enzimologia , Urotélio/ultraestrutura
3.
Mol Biol Cell ; 23(7): 1354-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323295

RESUMO

The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.


Assuntos
Exocitose/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Mielina/metabolismo , Proteolipídeos/metabolismo , Uroplaquinas/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Membrana Celular/metabolismo , Cães , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Modelos Biológicos , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Transporte Proteico , Proteolipídeos/antagonistas & inibidores , Proteolipídeos/deficiência , Proteolipídeos/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uroplaquinas/deficiência , Uroplaquinas/genética
4.
Kidney Int ; 75(11): 1153-1165, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19340092

RESUMO

Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.


Assuntos
Glicoproteínas de Membrana/fisiologia , Animais , Permeabilidade da Membrana Celular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Camundongos , Multimerização Proteica , Transporte Proteico , Tetraspaninas , Uroplaquina Ia , Urotélio/química
5.
J Cell Sci ; 120(Pt 13): 2248-58, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17567679

RESUMO

Microtubules are frequently seen in close proximity to membranes of the endoplasmic reticulum (ER), and the membrane protein CLIMP-63 is thought to mediate specific interaction between these two structures. It was, therefore, of interest to investigate whether these microtubules are in fact responsible for the highly restricted lateral mobility of the translocon complexes in M3/18 cells as described before. As determined by fluorescence recovery after photobleaching, the breakdown of microtubules caused by drug treatment or by overexpression of the microtubule-severing protein spastin, resulted in an increased lateral mobility of the translocons that are assembled into polysomes. Also, the expression of a CLIMP-63 mutant lacking the microtubule-binding domain resulted in a significant increase of the lateral mobility of the translocon complexes. The most striking increase in the diffusion rate of the translocon complexes was observed in M3/18 cells transfected with a siRNA that effectively knocked down the expression of the endogenous CLIMP-63. It appears, therefore, that interaction of microtubules with the ER results in the immobilization of translocon complexes that are part of membrane-bound polysomes, and may play a role in the mechanism that segregates the rough and smooth domains of the ER.


Assuntos
Adenosina Trifosfatases/biossíntese , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico/genética , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/genética , Expressão Gênica , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Microtúbulos/genética , Mutação , Polirribossomos/genética , Polirribossomos/metabolismo , Estrutura Terciária de Proteína/genética , RNA Interferente Pequeno/genética , Espastina
6.
J Cell Sci ; 119(Pt 24): 5077-86, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17158912

RESUMO

The surface of the mammalian urinary bladder is covered by a crystalline, asymmetric unit membrane (AUM) structure that contains the four major uroplakins (UPs): Ia, Ib, II and IIIa. UPIa and UPIb belong to the family of tetraspanins. Although UPIa and UPIb are structurally conserved, only UPIb could exit from the endoplasmic reticulum (ER) and reach the cell surface when expressed alone in 293T cells. Modifications of the large extracellular loop of UPIb, such as mutation of the N-glycosylation site or the cysteines involved in the formation of three disulfide bridges, or exchanging the large luminal loop of UPIb with that of UPIa did not affect the ability of UPIb to reach the cell surface. However, modifications of any of the four transmembrane domains of UPIb led to ER retention, suggesting that the proper formation of helical bundles consisting of the tetraspanin transmembrane domains is a prerequisite for UPIb to exit from the ER. Results of sedimentation analysis suggested that aggregate formation is a mechanism for ER retention.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Células COS , Linhagem Celular , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
7.
Endocrinology ; 146(10): 4234-49, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15947003

RESUMO

Steroid-secreting cells are characterized by abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. Yet they have relatively little morphologically identifiable rough endoplasmic reticulum, presumably required for synthesis and maintenance of the smooth membranes. In this study, we demonstrate that adrenal smooth microsomal subfractions enriched in smooth endoplasmic reticulum membranes contain high levels of translocation apparatus and oligosaccharyltransferase complex proteins, previously thought confined to rough endoplasmic reticulum. We further demonstrate that these smooth microsomal subfractions are capable of effecting cotranslational translocation, signal peptide cleavage, and N-glycosylation of newly synthesized polypeptides. This shifts the paradigm for distinction between smooth and rough endoplasmic reticulum. Confocal microscopy revealed the proteins to be distributed throughout the abundant tubular endoplasmic reticulum in these cells, which is predominantly smooth surfaced. We hypothesize that the broadly distributed translocon and oligosaccharyltransferase proteins participate in local synthesis and/or quality control of membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally regulated manner.


Assuntos
Corticosteroides/biossíntese , Córtex Suprarrenal/citologia , Colesterol/biossíntese , Retículo Endoplasmático/metabolismo , Corticosteroides/metabolismo , Animais , Transporte Biológico , Fracionamento Celular , Colesterol/metabolismo , Cobaias , Membranas Intracelulares/metabolismo , Microssomos/metabolismo , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo
8.
J Cell Biol ; 161(4): 715-25, 2003 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-12756234

RESUMO

In eukaryotic cells, polypeptides are N glycosylated after passing through the membrane of the ER into the ER lumen. This modification is effected cotranslationally by the multimeric oligosaccharyltransferase (OST) enzyme. Here, we report the first cross-linking of an OST subunit to a nascent chain that is undergoing translocation through, or integration into, the ER membrane. A photoreactive probe was incorporated into a nascent chain using a modified Lys-tRNA and was positioned in a cryptic glycosylation site (-Q-K-T- instead of -N-K-T-) in the nascent chain. When translocation intermediates with nascent chains of increasing length were irradiated, nascent chain photocross-linking to translocon components, Sec61alpha and TRAM, was replaced by efficient photocross-linking solely to a protein identified by immunoprecipitation as the STT3 subunit of the OST. No cross-linking was observed in the absence of a cryptic sequence or in the presence of a competitive peptide substrate of the OST. As no significant nascent chain photocross-linking to other OST subunits was detected in these fully assembled translocation and integration intermediates, our results strongly indicate that the nascent chain portion of the OST active site is located in STT3.


Assuntos
Hexosiltransferases , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases/química , Transferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos da radiação , Retículo Endoplasmático/enzimologia , Luz , Proteínas de Membrana/biossíntese , Peso Molecular , Ligação Proteica/efeitos da radiação , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
9.
J Cell Biol ; 158(3): 497-506, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12163472

RESUMO

In the ER, the translocon complex (TC) functions in the translocation and cotranslational modification of proteins made on membrane-bound ribosomes. The oligosaccharyltransferase (OST) complex is associated with the TC, and performs the cotranslational N-glycosylation of nascent polypeptide chains. Here we use a GFP-tagged subunit of the OST complex (GFP-Dad1) that rescues the temperature-sensitive (ts) phenotype of tsBN7 cells, where Dad1 is degraded and N-glycosylation is inhibited, to study the lateral mobility of the TC by FRAP. GFP-Dad1 that is functionally incorporated into TCs diffuses extremely slow, exhibiting an effective diffusion constant (Deff) about seven times lower than that of GFP-tagged ER membrane proteins unhindered in their lateral mobility. Termination of protein synthesis significantly increases the lateral mobility of GFP-Dad1 in the ER membranes, but to a level that is still lower than that of free GFP-Dad1. This suggests that GFP-Dad1 as part of the OST remains associated with inactive TCs. Our findings that TCs assembled into membrane-bound polysomes diffuse slowly within the ER have mechanistic implications for the segregation of the ER into smooth and rough domains.


Assuntos
Retículo Endoplasmático/metabolismo , Células Eucarióticas/metabolismo , Hexosiltransferases , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , Animais , Células Cultivadas , Células Clonais/metabolismo , Clonagem Molecular , Cricetinae , Difusão , Retículo Endoplasmático/ultraestrutura , Células Eucarióticas/ultraestrutura , Regulação da Expressão Gênica/fisiologia , Glicosilação , Proteínas de Fluorescência Verde , Indicadores e Reagentes , Membranas Intracelulares/ultraestrutura , Proteínas Luminescentes , Substâncias Macromoleculares , Proteínas de Membrana/genética , Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Fatores de Tempo , Transferases/genética , Transferases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA