Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1058204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618360

RESUMO

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Assuntos
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Buprenorfina/uso terapêutico , Animais de Laboratório , Receptores de Quimiocinas/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Integrinas/uso terapêutico , Quimiocinas C/genética
2.
Front Immunol ; 9: 494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593735

RESUMO

Current investigations underline the important roles of C-C motif ligands in the development of neuropathic pain; however, their participation in diabetic neuropathy is still undefined. Therefore, the goal of our study was to evaluate the participation of macrophage inflammatory protein-1 (MIP-1) family members (CCL3, CCL4, CCL9) in a streptozotocin (STZ)-induced mouse model of diabetic neuropathic pain. Single intrathecal administration of each MIP-1 member (10, 100, or 500 ng/5 µl) in naïve mice evoked hypersensitivity to mechanical (von Frey test) and thermal (cold plate test) stimuli. Concomitantly, protein analysis has shown that, 7 days following STZ injection, the levels of CCL3 and CCL9 (but not CCL4) are increased in the lumbar spinal cord. Performed additionally, immunofluorescence staining undoubtedly revealed that CCL3, CCL9, and their receptors (CCR1 and CCR5) are expressed predominantly by neurons. In vitro studies provided evidence that the observed expression of CCL3 and CCL9 may be partially of glial origin; however, this observation was only partially possible to confirm by immunohistochemical study. Single intrathecal administration of CCL3 or CCL9 neutralizing antibody (2 and 4 µg/5 µl) delayed neuropathic pain symptoms as measured at day 7 following STZ administration. Single intrathecal injection of a CCR1 antagonist (J113863; 15 and 20 µg/5 µl) also attenuated pain-related behavior as evaluated at day 7 after STZ. Both neutralizing antibodies, as well as the CCR1 antagonist, enhanced the effectiveness of morphine in STZ-induced diabetic neuropathy. These findings highlight the important roles of CCL3 and CCL9 in the pathology of diabetic neuropathic pain and suggest that they play pivotal roles in opioid analgesia.


Assuntos
Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Proteínas Inflamatórias de Macrófagos/metabolismo , Macrófagos/imunologia , Derivados da Morfina/uso terapêutico , Neuralgia/tratamento farmacológico , Neurônios/fisiologia , Animais , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocinas CC/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Receptores CCR1/antagonistas & inibidores , Xantenos/administração & dosagem
3.
Neurotox Res ; 33(3): 532-548, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29134560

RESUMO

MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.


Assuntos
Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Alucinógenos/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Animais , Ensaio Cometa/métodos , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Serotonina/metabolismo
4.
J Neuroimmunol ; 262(1-2): 35-45, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23870534

RESUMO

A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/imunologia , Mediadores da Inflamação/fisiologia , Interleucinas/fisiologia , Minociclina/administração & dosagem , Morfina/farmacologia , Neuralgia/imunologia , Analgésicos Opioides/farmacologia , Animais , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Interleucinas/classificação , Masculino , Camundongos , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Regulação para Cima/imunologia
5.
Pharmacol Rep ; 65(6): 1663-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24553015

RESUMO

Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage activity.


Assuntos
Depressão/imunologia , Macrófagos/imunologia , Animais , Antidepressivos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Depressão/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Macrófagos/efeitos dos fármacos
6.
J Neurosci ; 31(2): 453-60, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228155

RESUMO

The nucleolus represents an essential stress sensor for the cell. However, the molecular consequences of nucleolar damage and their possible link with neurodegenerative diseases remain to be elucidated. Here, we show that nucleolar damage is present in both genders in Parkinson's disease (PD) and in the pharmacological PD model induced by the neurotoxin 1,2,3,6-tetrahydro-1-methyl-4-phenylpyridine hydrochloride (MPTP). Mouse mutants with nucleolar disruption restricted to dopaminergic (DA) neurons show phenotypic alterations that resemble PD, such as progressive and differential loss of DA neurons and locomotor abnormalities. At the molecular level, nucleolar disruption results in increased p53 levels and downregulation of mammalian target of rapamycin (mTOR) activity, leading to mitochondrial dysfunction and increased oxidative stress, similar to PD. In turn, increased oxidative stress induced by MPTP causes mTOR and ribosomal RNA synthesis inhibition. Collectively, these observations suggest that the interplay between nucleolar dysfunction and increased oxidative stress, involving p53 and mTOR signaling, may constitute a destructive axis in experimental and sporadic PD.


Assuntos
Nucléolo Celular/patologia , Dopamina/metabolismo , Neurônios/patologia , Estresse Oxidativo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Serina-Treonina Quinases TOR/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Nucléolo Celular/metabolismo , Deleção de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Mitocôndrias/fisiologia , Destreza Motora , Neurônios/metabolismo , Doença de Parkinson/patologia , Transtornos Parkinsonianos/fisiopatologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/fisiologia
7.
J Neurosci ; 28(48): 12759-64, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036968

RESUMO

Transcription of rRNA genes is essential for maintaining nucleolar integrity, a hallmark for the healthy state and proliferation rate of a cell. Inhibition of rRNA synthesis leads to disintegration of the nucleolus, elevated levels of p53, and induction of cell suicide, identifying the nucleolus as a critical stress sensor. Whether deregulation of rRNA synthesis is causally involved in neurodegeneration by promoting cell death and/or by inhibiting cellular growth has however not been addressed. The transcription factor TIF-IA plays a central role in mammalian rRNA synthesis, regulating the transcriptional activity of RNA polymerase I. To investigate the consequences of nucleolar perturbation in the nervous system, we have chosen to specifically ablate the gene encoding the transcription factor TIF-IA in two different contexts: neural progenitors and hippocampal neurons. Here, we show that ablation of TIF-IA leads to impaired nucleolar activity and results in increased levels of the proapoptotic transcription factor p53 in both neural progenitors and hippocampal neurons but induces rapid apoptosis only in neural progenitors. Nondividing cells of the adult hippocampus are more refractory to loss of rRNA transcription and face a protracted degeneration. Our study provides an unexploited strategy to initiate neurodegeneration based on perturbation of nucleolar function and underscores a novel perspective to study the cellular and molecular changes involved in the neurodegenerative processes.


Assuntos
Apoptose/genética , Hipocampo/metabolismo , Degeneração Neural/genética , Neurônios/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Ribossômico/biossíntese , Animais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Ribossômico/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA