Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
iScience ; 27(4): 109524, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577109

RESUMO

Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.

2.
BMC Biol ; 21(1): 110, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194054

RESUMO

BACKGROUND: DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS: This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS: Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.


Assuntos
Proteínas de Ligação a DNA , Endonucleases , Diester Fosfórico Hidrolases , Proteínas de Saccharomyces cerevisiae , Dano ao DNA , Reparo do DNA , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo
3.
Nat Commun ; 12(1): 5545, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545070

RESUMO

The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that 'nucleotide proofreading' activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Nucleotídeos/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Homologia de Sequência de Aminoácidos , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , DNA de Cadeia Simples/metabolismo , Fluorescência , Interferometria , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Especificidade da Espécie
4.
Nucleic Acids Res ; 49(1): 285-305, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33332547

RESUMO

RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51-ssDNA filaments. RECQ5 interacts with RAD51 through protein-protein contacts, and disruption of this interface through a RECQ5-F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51-K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51-I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.


Assuntos
DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Proteínas Motores Moleculares/metabolismo , RecQ Helicases/metabolismo , Imagem Individual de Molécula , Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/ultraestrutura , Humanos , Hidrólise , Cinética , Microscopia de Força Atômica , Proteínas Motores Moleculares/ultraestrutura , Mutação de Sentido Incorreto , Mutação Puntual , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/metabolismo , Especificidade por Substrato
5.
Nature ; 587(7833): 303-308, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33057192

RESUMO

Telomeres-repeated, noncoding nucleotide motifs and associated proteins that are found at the ends of eukaryotic chromosomes-mediate genome stability and determine cellular lifespan1. Telomeric-repeat-containing RNA (TERRA) is a class of long noncoding RNAs (lncRNAs) that are transcribed from chromosome ends2,3; these RNAs in turn regulate telomeric chromatin structure and telomere maintenance through the telomere-extending enzyme telomerase4-6 and homology-directed DNA repair7,8. The mechanisms by which TERRA is recruited to chromosome ends remain poorly defined. Here we develop a reporter system with which to dissect the underlying mechanisms, and show that the UUAGGG repeats of TERRA are both necessary and sufficient to target TERRA to chromosome ends. TERRA preferentially associates with short telomeres through the formation of telomeric DNA-RNA hybrid (R-loop) structures that can form in trans. Telomere association and R-loop formation trigger telomere fragility and are promoted by the recombinase RAD51 and its interacting partner BRCA2, but counteracted by the RNA-surveillance factors RNaseH1 and TRF1. RAD51 physically interacts with TERRA and catalyses R-loop formation with TERRA in vitro, suggesting a direct involvement of this DNA recombinase in the recruitment of TERRA by strand invasion. Together, our findings reveal a RAD51-dependent pathway that governs TERRA-mediated R-loop formation after transcription, providing a mechanism for the recruitment of lncRNAs to new loci in trans.


Assuntos
Estruturas R-Loop , RNA Longo não Codificante/química , Rad51 Recombinase/metabolismo , Telômero/química , Telômero/metabolismo , Sequência de Bases , Biocatálise , Genes Reporter , Células HeLa , Humanos , RNA Longo não Codificante/genética , Ribonuclease H/metabolismo , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
6.
Mol Oncol ; 14(10): 2487-2503, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32579780

RESUMO

As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitose , Piperidinas/farmacologia , Neoplasias da Próstata/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Desoxicitidina/farmacologia , Humanos , Masculino , Camundongos SCID , Mitose/efeitos dos fármacos , Piperidinas/química , Pirazóis/química , Pirimidinas/química , Fase S/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
Nucleic Acids Res ; 48(2): 694-708, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799622

RESUMO

The proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination. For decades, it has been believed that the RAD52 protein played only a back-up role in the repair of DSBs performing an error-prone single strand annealing (SSA). Recent studies have identified several new functions of the RAD52 protein and have drawn attention to its important role in genome maintenance. Here, we show that RAD52 activities are enhanced by interacting with a small and highly acidic protein called DSS1. Binding of DSS1 to RAD52 changes the RAD52 oligomeric conformation, modulates its DNA binding properties, stimulates SSA activity and promotes strand invasion. Our work introduces for the first time RAD52 as another interacting partner of DSS1 and shows that both proteins are important players in the SSA and BIR pathways of DSB repair.


Assuntos
Carcinogênese/genética , Recombinação Homóloga/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Instabilidade Genômica/genética , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Clin Epigenetics ; 11(1): 121, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439048

RESUMO

BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.


Assuntos
Anemia Macrocítica/genética , Regulação para Baixo , Células-Tronco Hematopoéticas/citologia , Histonas/genética , Síndromes Mielodisplásicas/genética , Animais , Diferenciação Celular , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Modelos Animais de Doenças , Epigênese Genética , Haploinsuficiência , Células-Tronco Hematopoéticas/química , Humanos , Camundongos , Mutação , Sítios de Splice de RNA , Análise de Sequência de RNA
9.
EMBO Rep ; 20(9): e47592, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347271

RESUMO

CDK12 is a kinase associated with elongating RNA polymerase II (RNAPII) and is frequently mutated in cancer. CDK12 depletion reduces the expression of homologous recombination (HR) DNA repair genes, but comprehensive insight into its target genes and cellular processes is lacking. We use a chemical genetic approach to inhibit analog-sensitive CDK12, and find that CDK12 kinase activity is required for transcription of core DNA replication genes and thus for G1/S progression. RNA-seq and ChIP-seq reveal that CDK12 inhibition triggers an RNAPII processivity defect characterized by a loss of mapped reads from 3'ends of predominantly long, poly(A)-signal-rich genes. CDK12 inhibition does not globally reduce levels of RNAPII-Ser2 phosphorylation. However, individual CDK12-dependent genes show a shift of P-Ser2 peaks into the gene body approximately to the positions where RNAPII occupancy and transcription were lost. Thus, CDK12 catalytic activity represents a novel link between regulation of transcription and cell cycle progression. We propose that DNA replication and HR DNA repair defects as a consequence of CDK12 inactivation underlie the genome instability phenotype observed in many cancers.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Células HCT116 , Humanos , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
10.
J Mol Model ; 24(7): 176, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29943199

RESUMO

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.


Assuntos
DNA Helicases/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , DNA Helicases/genética , DNA Helicases/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Ativação Enzimática , Hidrólise , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Mutação , Análise de Componente Principal , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
11.
Nature ; 557(7703): 57-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29670289

RESUMO

SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.


Assuntos
Replicação do DNA , Interferon Tipo I/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Citosol/metabolismo , DNA de Cadeia Simples/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Interferon Tipo I/imunologia , Proteína Homóloga a MRE11/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , RecQ Helicases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/deficiência
12.
Nucleic Acids Res ; 46(8): 3967-3980, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29481689

RESUMO

Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an 'open' conformation when compared to a 'closed' structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.


Assuntos
DNA de Cadeia Simples/metabolismo , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Nucleotídeos de Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Evolução Biológica , Microscopia Crioeletrônica , Humanos , Cinética , Modelos Moleculares , Mutação , Rad51 Recombinase/genética
13.
Cell Rep ; 21(2): 333-340, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020621

RESUMO

Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.


Assuntos
Replicação do DNA , Anemia de Fanconi/genética , Mutação , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Proteína Homóloga a MRE11/metabolismo , Ligação Proteica , Estabilidade Proteica , Rad51 Recombinase/genética , Xenopus
14.
BMC Biol ; 15(1): 90, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969641

RESUMO

BACKGROUND: Proper DNA replication is essential for faithful transmission of the genome. However, replication stress has serious impact on the integrity of the cell, leading to stalling or collapse of replication forks, and has been determined as a driving force of carcinogenesis. Mus81-Mms4 complex is a structure-specific endonuclease previously shown to be involved in processing of aberrant replication intermediates and promotes POLD3-dependent DNA synthesis via break-induced replication. However, how replication components might be involved in this process is not known. RESULTS: Herein, we show the interaction and robust stimulation of Mus81-Mms4 nuclease activity by heteropentameric replication factor C (RFC) complex, the processivity factor of replicative DNA polymerases that is responsible for loading of proliferating cell nuclear antigen (PCNA) during DNA replication and repair. This stimulation is enhanced by RFC-dependent ATP hydrolysis and by PCNA loading on the DNA. Moreover, this stimulation is not specific to Rfc1, the largest of subunit of this complex, thus indicating that alternative clamp loaders may also play a role in the stimulation. We also observed a targeting of Mus81 by RFC to the nick-containing DNA substrate and we provide further evidence that indicates cooperation between Mus81 and the RFC complex in the repair of DNA lesions generated by various DNA-damaging agents. CONCLUSIONS: Identification of new interacting partners and modulators of Mus81-Mms4 nuclease, RFC, and PCNA imply the cooperation of these factors in resolution of stalled replication forks and branched DNA structures emanating from the restarted replication forks under conditions of replication stress.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteína de Replicação C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Mol Cell ; 67(5): 867-881.e7, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28757209

RESUMO

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.


Assuntos
Proteína BRCA2/metabolismo , Replicação do DNA , DNA/biossíntese , Rad51 Recombinase/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Proteína BRCA2/genética , Sítios de Ligação , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Feminino , Instabilidade Genômica , Humanos , Proteína Homóloga a MRE11 , Masculino , Mutação , Ligação Proteica , Rad51 Recombinase/genética , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Proteínas de Xenopus/genética , Xenopus laevis/genética
16.
Mol Cancer Ther ; 16(9): 1831-1842, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28619751

RESUMO

Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G2-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Remoção de Radical Alquila/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Metilação , Camundongos , Estrutura Molecular , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 7(36): 58065-58074, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27517150

RESUMO

Fanconi anemia (FA) is a rare genetic disorder associated with bone-marrow failure, genome instability and cancer predisposition. Recently, we and others have demonstrated dysfunctional mitochondria with morphological alterations in FA cells accompanied by high reactive oxygen species (ROS) levels. Mitochondrial morphology is regulated by continuous fusion and fission events and the misbalance between these two is often accompanied by autophagy. Here, we provide evidence of impaired autophagy in FA. We demonstrate that FA cells have increased number of autophagic (presumably mitophagic) events and accumulate dysfunctional mitochondria due to an impaired ability to degrade them. Moreover, mitochondrial fission accompanied by oxidative stress (OS) is a prerequisite condition for mitophagy in FA and blocking this pathway may release autophagic machinery to clear dysfunctional mitochondria.


Assuntos
Anemia de Fanconi/fisiopatologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Doenças Raras/fisiopatologia , Autofagia , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Biochim Biophys Acta ; 1865(2): 184-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926806

RESUMO

Given the key role of mitochondria in various cellular events, it is not surprising that mitochondrial dysfunction (MDF) is seen in many pathological conditions, in particular cancer. The mechanisms defining MDF are not clearly understood and may involve genetic defects, misbalance of reactive oxygen species (ROS), impaired autophagy (mitophagy), acquired mutations in mitochondrial or nuclear DNA and inability of cells to cope with the consequences. The importance of MDF arises from its detection in the syndromes with defective DNA damage response (DDR) and cancer predisposition. Here, we will focus on the dual role of these syndromes in cancer predisposition and MDF with specific emphasis on impaired autophagy.


Assuntos
Dano ao DNA , Mitocôndrias/fisiologia , Neoplasias/etiologia , Autofagia , Humanos , Síndrome
19.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26966248

RESUMO

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Assuntos
Troca Genética/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Deleção de Genes , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Proteínas de Ligação a Telômeros/genética
20.
Pharmacol Ther ; 161: 111-131, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26899499

RESUMO

Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA