Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 26(2): 459-465, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34494335

RESUMO

OBJECTIVE: During the surgical procedure of deep brain stimulation (DBS), insertion of an electrode in the subthalamic nucleus (STN) frequently causes a temporary improvement of motor symptoms, known as the microlesion effect (MLE). The objective of this study was to determine the correlation between the intraoperative MLE and the clinical effect of DBS. MATERIALS AND METHODS: Thirty Parkinson's disease (PD) patients with Movement Disorder Society (MDS) Unified Parkinson's Disease Rating Scale (UPDRS) part III (MDS-UPDRS III) scores during bilateral STN-DBS implantation were included in this retrospective study. MDS-UPDRS III subscores (resting tremor, rigidity, and bradykinesia) of the contralateral upper extremity were used. During surgery, these subscores were assessed directly before and after insertion of the electrode. Also, these subscores were determined in the outpatient clinic after 11 weeks on average (on-stimulation). All assessments were performed in an off-medication state (at least 12 hours of medication washout). RESULTS: Postinsertion MDS-UPDRS motor scores decreased significantly compared to preinsertion scores (p < 0.001 for both hemispheres). The MLE showed a positive correlation with the clinical effect of DBS in both hemispheres (rho = 0.68 for the primarily treated hemisphere, p < 0.001, and rho = 0.59 for the secondarily treated hemisphere, p < 0.01). CONCLUSION: The MLE has a clinically relevant correlation with the effect of DBS in PD patients. These results suggest that the MLE can be relied upon as evidence of a clinically effective DBS electrode placement.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/tratamento farmacológico , Estudos Retrospectivos , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Núcleo Subtalâmico/cirurgia
2.
J Neurol Neurosurg Psychiatry ; 94(3): 236-244, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207065

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective neurosurgical treatment for Parkinson's disease. Surgical accuracy is a critical determinant to achieve an adequate DBS effect on motor performance. A two-millimetre surgical accuracy is commonly accepted, but scientific evidence is lacking. A systematic review and meta-analysis of study-level and individual patient data (IPD) was performed by a comprehensive search in MEDLINE, EMBASE and Cochrane Library. Primary outcome measures were (1) radial error between the implanted electrode and target; (2) DBS motor improvement on the Unified Parkinson's Disease Rating Scale part III (motor examination). On a study level, meta-regression analysis was performed. Also, publication bias was assessed. For IPD meta-analysis, a linear mixed effects model was used. Forty studies (1391 patients) were included, reporting radial errors of 0.45-1.86 mm. Errors within this range did not significantly influence the DBS effect on motor improvement. Additional IPD analysis (206 patients) revealed that a mean radial error of 1.13±0.75 mm did not significantly change the extent of DBS motor improvement. Our meta-analysis showed a huge publication bias on accuracy data in DBS. Therefore, the current literature does not provide an unequivocal upper threshold for acceptable accuracy of STN-DBS surgery. Based on the current literature, DBS-electrodes placed within a 2 mm range of the intended target do not have to be repositioned to enhance motor improvement after STN-DBS for Parkinson's disease. However, an indisputable upper cut-off value for surgical accuracy remains to be established. PROSPERO registration number is CRD42018089539.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Eletrodos Implantados , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
3.
Parkinsonism Relat Disord ; 93: 74-76, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34826764

RESUMO

The clinical benefit of Deep Brain Stimulation (DBS) is associated with electrode positioning accuracy. Intraoperative assessment of clinical effect is therefore key. Evaluating this clinical effect in patients with dystonic head tremor, as opposed to limb tremor, is challenging because the head is fixed in a stereotactic frame. To clinically assess head tremor during surgery, surface electromyography (EMG) electrodes were bilaterally applied to the sternocleidomastoid and cervical paraspinal muscles. This case shows that intraoperative polymyography is an easy and useful tool to assess the clinical effect of DBS electrode positioning.


Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Miografia/métodos , Tremor/cirurgia , Idoso de 80 Anos ou mais , Feminino , Humanos , Ilustração Médica , Miografia/tendências
4.
J Clin Med ; 10(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34441763

RESUMO

Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.

5.
Neuromodulation ; 22(4): 472-477, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30629330

RESUMO

INTRODUCTION: Clinical response to deep brain stimulation (DBS) strongly depends on the appropriate placement of the electrode in the targeted structure. Postoperative MRI is recognized as the gold standard to verify the DBS-electrode position in relation to the intended anatomical target. However, intraoperative computed tomography (iCT) might be a feasible alternative to MRI. MATERIALS AND METHODS: In this prospective noninferiority study, we compared iCT with postoperative MRI (24-72 hours after surgery) in 29 consecutive patients undergoing placement of 58 DBS electrodes. The primary outcome was defined as the difference in Euclidean distance between lead tip coordinates as determined on both imaging modalities, using the lead tip depicted on MRI as reference. Secondary outcomes were difference in radial error and depth, as well as difference in accuracy relative to target. RESULTS: The mean difference between the lead tips was 0.98 ± 0.49 mm (0.97 ± 0.47 mm for the left-sided electrodes and 1.00 ± 0.53 mm for the right-sided electrodes). The upper confidence interval (95% CI, 0.851 to 1.112) did not exceed the noninferiority margin established. The average radial error between lead tips was 0.74 ± 0.48 mm and the average depth error was determined to be 0.53 ± 0.40 mm. The linear Deming regression indicated a good agreement between both imaging modalities regarding accuracy relative to target. CONCLUSIONS: Intraoperative CT is noninferior to MRI for the verification of the DBS-electrode position. CT and MRI have their specific benefits, but both should be considered equally suitable for assessing accuracy.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/normas , Monitorização Neurofisiológica Intraoperatória/normas , Imageamento por Ressonância Magnética/normas , Tomografia Computadorizada por Raios X/normas , Adolescente , Adulto , Idoso , Encéfalo/cirurgia , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA