Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 9: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443311

RESUMO

Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.


Assuntos
Transtorno do Espectro Autista/genética , Diferenciação Celular/genética , Neurônios/citologia , Pentosiltransferases/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 16 , Variações do Número de Cópias de DNA , Humanos
2.
Cell Death Dis ; 8(6): e2867, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594404

RESUMO

The aim of this study was to design a road map for personalizing cancer therapy in hepatocellular carcinoma (HCC) by using molecular pattern diagnostics. As an exploratory study, we investigated molecular patterns of tissues of two tumors from individual HCC patients, which in previous experiments had shown contrasting reactions to the phase 2 transforming growth factor beta receptor 1 inhibitor galunisertib. Cancer-driving molecular patterns encompass - inter alias - altered transcription profiles and somatic mutations in coding regions differentiating tumors from their respective peritumoral tissues and from each other. Massive analysis of cDNA ends and all-exome sequencing demonstrate a highly divergent transcriptional and mutational landscape, respectively, for the two tumors, that offers potential explanations for the tumors contrasting responses to galunisertib. Molecular pattern diagnostics (MPDs) suggest alternative, individual-tumor-specific therapies, which in both cases deviate from the standard sorafenib treatment and from each other. Suggested personalized therapies use kinase inhibitors and immune-focused drugs as well as low-toxicity natural compounds identified using an advanced bioinformatics routine included in the MPD protocol. The MPD pipeline we describe here for the prediction of suitable drugs for treatment of two contrasting HCCs may serve as a blueprint for the design of therapies for various types of cancer.


Assuntos
Carcinoma Hepatocelular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Técnicas de Diagnóstico Molecular , Medicina de Precisão/métodos , Transcrição Gênica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Masculino , Projetos Piloto
3.
Epigenetics ; 11(4): 259-72, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-27018948

RESUMO

Human monocytes are a heterogeneous cell population consisting of 3 subsets: classical CD14++CD16-, intermediate CD14++CD16+ and nonclassical CD14+CD16++ monocytes. Via poorly characterized mechanisms, intermediate monocyte counts rise in chronic inflammatory diseases, among which chronic kidney disease is of particular epidemiologic importance. DNA methylation is a central epigenetic feature that controls hematopoiesis. By applying next-generation Methyl-Sequencing we now tested how far the 3 monocyte subsets differ in their DNA methylome and whether uremia induces DNA methylation changes in differentiating monocytes. We found that each monocyte subset displays a unique phenotype with regards to DNA methylation. Genes with differentially methylated promoter regions in intermediate monocytes were linked to distinct immunological processes, which is in line with results from recent gene expression analyses. In vitro, uremia induced dysregulation of DNA methylation in differentiating monocytes, which affected several transcription regulators important for monocyte differentiation (e.g., FLT3, HDAC1, MNT) and led to enhanced generation of intermediate monocytes. As potential mediator, the uremic toxin and methylation inhibitor S-adenosylhomocysteine induced shifts in monocyte subsets in vitro, and associated with monocyte subset counts in vivo. Our data support the concept of monocyte trichotomy and the distinct role of intermediate monocytes in human immunity. The shift in monocyte subsets that occurs in chronic kidney disease, a proinflammatory condition of substantial epidemiological impact, may be induced by accumulation of uremic toxins that mediate epigenetic dysregulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Metilação de DNA/genética , Histona Desacetilase 1/genética , Insuficiência Renal Crônica/genética , Proteínas Repressoras/genética , Uremia/genética , Tirosina Quinase 3 Semelhante a fms/genética , Diferenciação Celular/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores de Lipopolissacarídeos/genética , Monócitos/metabolismo , Receptores de IgG/genética , Insuficiência Renal Crônica/patologia , S-Adenosil-Homocisteína/metabolismo , Uremia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA