Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Hum Genet ; 110(3): 427-441, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787739

RESUMO

Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Alelos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
2.
PLoS One ; 15(9): e0237792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881892

RESUMO

BACKGROUND: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. METHODS: We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). RESULTS: We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively; P-value < 5×10-8) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84×10-8). CONCLUSIONS: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. IMPACT: Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Variação Genética , Células Germinativas/metabolismo , Sarcoma de Ewing/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética
3.
Nat Commun ; 9(1): 3184, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093639

RESUMO

Ewing sarcoma (EWS) is a pediatric cancer characterized by the EWSR1-FLI1 fusion. We performed a genome-wide association study of 733 EWS cases and 1346 unaffected individuals of European ancestry. Our study replicates previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1, and identifies new loci at 6p25.1, 20p11.22 and 20p11.23. Effect estimates exhibit odds ratios in excess of 1.7, which is high for cancer GWAS, and striking in light of the rarity of EWS cases in familial cancer syndromes. Expression quantitative trait locus (eQTL) analyses identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ). The 20p11.22 locus is near NKX2-2, a highly overexpressed gene in EWS. Interestingly, most loci reside near GGAA repeat sequences and may disrupt binding of the EWSR1-FLI1 fusion protein. The high locus to case discovery ratio from 733 EWS cases suggests a genetic architecture in which moderate risk SNPs constitute a significant fraction of risk.


Assuntos
Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Sarcoma de Ewing/genética , Alelos , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Genótipo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Proteínas Nucleares , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Proteína Proto-Oncogênica c-fli-1/genética , Controle de Qualidade , Locos de Características Quantitativas , Proteína EWS de Ligação a RNA/genética , Risco , Sarcoma de Ewing/etnologia , Fatores de Transcrição/genética , População Branca , Proteínas de Peixe-Zebra
4.
Curr Opin Clin Nutr Metab Care ; 20(4): 266-271, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28441146

RESUMO

PURPOSE OF REVIEW: Glucose metabolism is a central process in mammalian energy homeostasis. Its deregulation is a key factor in development of metabolic disease like diabetes and cancer. In recent decades, our understanding of gene regulation at the signaling, chromatin and posttranscriptional levels has seen dramatic developments. RECENT FINDINGS: A number of epigenetic mechanisms that do not affect the genetic code can be assessed with new technologies. However, increasing complexity becomes a major challenge for translation into clinical application. SUMMARY: The current review provides an update of transcriptional control of glucose metabolism, focusing on epigenetic regulators, DNA-methylation, histone modifications and noncoding RNAs. Recent studies heavily support the importance of those mechanisms for future therapeutics and preventive efforts for metabolic diseases.


Assuntos
Epigênese Genética/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Acetilação , Animais , Metilação de DNA/fisiologia , Código das Histonas/fisiologia , Histonas/metabolismo , Humanos , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/terapia , Metilação , RNA não Traduzido
5.
Horm Metab Res ; 49(5): 343-349, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28351093

RESUMO

Angiopoietin-like protein 8 (ANGPTL8)/betatrophin expression in visceral adipose tissue and associations with circulating fatty acid profile have not yet been investigated.Forty subjects were included in a cross-sectional study, 57 in a dietary weight reduction intervention. Circulating Angiopoietin-like protein 8/betatrophin was measured in all subjects. Liver and adipose tissue were sampled and plasma fatty acids and tissue Angiopoietin-like protein 8/betatrophin expression were evaluated in the cross-sectional study. In the intervention study oral glucose testing and liver magnetic resonance scanning at baseline and after 6 months were performed. Angiopoietin-like protein 8/betatrophin mRNA was increased in visceral compared to subcutaneous adipose tissue (p<0.001). Circulating ANGPTL8/betatrophin correlated with liver steatosis (r=0.42, p=0.047), triacylglycerols (r=0.34, p=0.046), saturated (r=0.43, p=0.022), monounsaturated (r=0.51, p=0.007), and polyunsaturated fatty acids (r=-0.53, p=0.004). In the intervention study, baseline Angiopoietin-like protein 8/betatrophin correlated with age (r=0.32, p=0.010) and triacylglycerols (r=0.30, p=0.02) and was increased with hepatic steatosis (p=0.033). Weight loss reduced liver fat by 45% and circulating Angiopoietin-like protein 8/betatrophin by 11% (288±17 vs. 258±17 pg/ml; p=0.015). Angiopoietin-like protein 8/betatrophin is related to liver steatosis, while visceral adipose tissue represents an additional site of expression in humans.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Fígado Gorduroso/genética , Gordura Intra-Abdominal/metabolismo , Hormônios Peptídicos/genética , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Estudos de Coortes , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
PLoS One ; 11(3): e0152314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019061

RESUMO

Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10(-5) and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10(-5) and 3.0x10(-3)). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10(-9)). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits are associated and that these associations are partially BMI-dependent. Furthermore, the interaction of ABCG1 with glucose metabolism is modulated by epigenetic processes.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Índice de Massa Corporal , Ilhas de CpG , DNA/análise , DNA/sangue , DNA/isolamento & purificação , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética , Feminino , Alemanha , Teste de Tolerância a Glucose , Humanos , Insulina/análise , Masculino , Pessoa de Meia-Idade , Fenótipo
7.
Am J Physiol Endocrinol Metab ; 309(12): E968-80, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487005

RESUMO

In humans and rodents, risk of metabolic syndrome is sexually dimorphic, with an increased incidence in males. Additionally, the protective role of female gonadal hormones is ostensible, as prevalence of type 2 diabetes mellitus (T2DM) increases after menopause. Here, we investigated the influence of estrogen (E2) on the onset of T2DM in female New Zealand obese (NZO) mice. Diabetes prevalence (defined as blood glucose levels >16.6 mmol/l) of NZO females on high-fat diet (60 kcal% fat) in week 22 was 43%. This was markedly dependent on liver fat content in week 10, as detected by computed tomography. Only mice with a liver fat content >9% in week 10 plus glucose levels >10 mmol/l in week 9 developed hyperglycemia by week 22. In addition, at 11 wk, diacylglycerols were elevated in livers of diabetes-prone mice compared with controls. Hepatic expression profiles obtained from diabetes-prone and -resistant mice at 11 wk revealed increased abundance of two transcripts in diabetes-prone mice: Mogat1, which catalyzes the synthesis of diacylglycerols from monoacylglycerol and fatty acyl-CoA, and the fatty acid transporter Cd36. E2 treatment of diabetes-prone mice for 10 wk prevented any further increase in liver fat content and reduced diacylglycerols and the abundance of Mogat1 and Cd36, leading to a reduction of diabetes prevalence and an improved glucose tolerance compared with untreated mice. Our data indicate that early elevation of hepatic Cd36 and Mogat1 associates with increased production and accumulation of triglycerides and diacylglycerols, presumably resulting in reduced hepatic insulin sensitivity and leading to later onset of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estrogênios/farmacologia , Ácidos Graxos/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Animais , Feminino , Gordura Intra-Abdominal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prevalência , Ratos
8.
Cell Cycle ; 14(14): 2293-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945652

RESUMO

Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Insulisina/metabolismo , Fígado/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Estudos de Coortes , Ciclina G2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Insulisina/antagonistas & inibidores , Insulisina/genética , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , Transcriptoma/efeitos dos fármacos , Receptor fas/metabolismo
9.
J Diabetes Res ; 2014: 187153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672802

RESUMO

Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60) induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD), New Zealand obese (NZO), and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC), interleukin 6 (IL-6), and macrophage chemoattractant protein-1 (MCP-1). Hsp60 showed specific binding to (pre-)adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s) and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-)adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-)adipocytes strongly depended on NF κ B-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.


Assuntos
Adipócitos/metabolismo , Chaperonina 60/metabolismo , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Paniculite/metabolismo , Regulação para Cima , Adipócitos/imunologia , Adipócitos/patologia , Adipogenia , Animais , Células Cultivadas , Chaperonina 60/genética , Quimiocina CCL2/agonistas , Quimiocina CCL2/biossíntese , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/agonistas , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/metabolismo , Citocinas/agonistas , Citocinas/biossíntese , Feminino , Interleucina-6/agonistas , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Proteínas Mitocondriais/genética , NF-kappa B/agonistas , NF-kappa B/metabolismo , Obesidade/imunologia , Obesidade/patologia , Paniculite/imunologia , Paniculite/patologia , Proteínas Recombinantes/metabolismo
10.
Diabetes ; 61(3): 615-25, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22315307

RESUMO

The stress protein heat shock protein 60 (Hsp60) induces secretion of proinflammatory mediators from murine adipocytes. This study aimed to study Hsp60 as a mediator of adipose tissue inflammation and skeletal muscle cell (SkMC) insulin sensitivity and to quantify plasma Hsp60 concentrations in lean and obese individuals. Regulation of Hsp60 release and Hsp60-induced cytokine secretion and signaling was measured in human adipocytes and SkMCs. Adipocytes exhibited higher Hsp60 release than preadipocytes and SkMCs, which was further stimulated by cytokines and Toll-like receptor (TLR)-4 activation. Hsp60 activated extracellular signal-related kinase (ERK)-1/2, Jun NH(2)-terminal kinase (JNK), p38, nuclear factor (NF)-κB, and impaired insulin-stimulated Akt phosphorylation in adipocytes. Furthermore, Hsp60 stimulated adipocytes to secrete tumor necrosis factor-α, interleukin (IL)-6, and IL-8. In SkMCs, Hsp60 activated ERK1/2, JNK, and NF-κB and inhibits insulin signaling and insulin-stimulated glucose uptake. SkMCs released IL-6, IL-8, and monocyte chemoattractant protein-1 on Hsp60 stimulation. Plasma Hsp60 was higher in obese males than in lean males and correlated positively with BMI, blood pressure, leptin, and homeostasis model assessment-insulin resistance. In summary, Hsp60 is released by human adipocytes, increased in plasma of obese humans, and induces insulin resistance. This is accompanied by activation of proinflammatory signaling in human adipocytes and SkMCs. Thus, Hsp60 might be a factor underlying adipose tissue inflammation and obesity-associated metabolic disorders.


Assuntos
Tecido Adiposo/metabolismo , Chaperonina 60/fisiologia , Inflamação/etiologia , Resistência à Insulina , Adipócitos/metabolismo , Adulto , Células Cultivadas , Chaperonina 60/sangue , Quimiocina CCL2/metabolismo , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA