Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 15(1): 237-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36184032

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS: Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS: Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION: These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.


Assuntos
Exossomos , Hepatite B , Humanos , Detergentes/metabolismo , Vírion , Hepatite B/metabolismo , Vírus da Hepatite B/genética , Antígenos de Superfície/metabolismo
2.
Sci Rep ; 12(1): 13007, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906465

RESUMO

Viruses of the giant virus family are characterized by a structurally conserved scaffold-capsid protein that shapes the icosahedral virion. The vaccinia virus (VACV) scaffold protein D13, however, transiently shapes the newly assembled viral membrane in to a sphere and is absent from the mature brick-shaped virion. In infected cells D13, a 62 kDa polypeptide, forms trimers that arrange in hexamers and a honey-comb like lattice. Membrane association of the D13-lattice may be mediated by A17, an abundant 21 kDa viral membrane protein. Whether membrane binding mediates the formation of the honey-comb lattice or if other factors are involved, remains elusive. Here we show that H7, a 17 kDa protein conserved among poxviruses, mediates proper formation of D13-hexamers, and hence the honey comb lattice and spherical immature virus. Without H7 synthesis D13 trimers assemble into a large 3D network rather than the typical well organized scaffold layer observed in wild-type infection, composed of short D13 tubes of discrete length that are tightly associated with the endoplasmic reticulum (ER). The data show an unexpected role for H7 in D13 organization and imply that formation of the honey-comb, hexagonal, lattice is essential for VACV membrane assembly and production of infectious progeny. The data are discussed with respect to scaffold proteins of other giant viruses.


Assuntos
Vaccinia virus , Vacínia , Humanos , Vaccinia virus/química , Proteínas Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus
3.
J Mol Biol ; 430(12): 1714-1724, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29702107

RESUMO

Nucleocytoplasmic large DNA viruses are a steadily growing group of viruses that infect a wide range of hosts and are characterized by large particle dimensions and genome sizes. Understanding how they enter into the host cell and deliver their genome in the cytoplasm is therefore particularly intriguing. Here, we review the current knowledge on the entry of two of the best-characterized nucleocytoplasmic large DNA viruses: the poxvirus Vaccinia virus (VACV) and the giant virus Mimivirus. While previous studies on VACV had proposed both direct fusion at the plasma membrane and endocytosis as entry routes, more recent biochemical and morphological data argue for macropinocytosis as well. Notably, direct imaging by electron microscopy (EM) also supported the existence of parallel ways of entry for VACV. Instead, all the giant viruses studied so far only enter cells by phagocytosis as observed by EM, and we discuss the mechanisms for opening of the particle, fusion of the viral and phagosomal membranes and genome delivery via a unique portal, specific for each giant virus. VACV core uncoating, in contrast, remains a morphologically ill-defined process. We argue that correlated light and electron microscopy methods are required to study VACV entry and uncoating in a direct and systematic manner. Such EM studies should also address whether entry of single particles and viral aggregates is different and thus provide an explanation for the different modes of entry described in the literature.


Assuntos
Mimiviridae/ultraestrutura , Vaccinia virus/ultraestrutura , Internalização do Vírus , Vírus de DNA , Tamanho do Genoma , Genoma Viral , Humanos , Microscopia Eletrônica , Mimiviridae/fisiologia , Fagocitose , Vaccinia virus/fisiologia
4.
Cell Microbiol ; 20(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29250873

RESUMO

Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system-1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane-bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system-1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time-lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper-replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.


Assuntos
Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella enterica/fisiologia , Citosol/metabolismo , Citosol/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos
5.
J Virol ; 87(19): 10612-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23885072

RESUMO

Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Membranas Intracelulares/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Cromatografia de Afinidade , Imunofluorescência , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Membranas Intracelulares/virologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , RNA Mensageiro/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteínas não Estruturais Virais/genética
6.
Cell Microbiol ; 15(11): 1883-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23751082

RESUMO

Nucleo cytoplasmic large DNA viruses (NCLDVs) are a group of double-stranded DNA viruses that replicate their DNA partly or entirely in the cytoplasm in association with viral factories (VFs). They share about 50 genes suggesting that they are derived from a common ancestor. Using transmission electron microscopy (TEM) and electron tomography (ET) we showed that the NCLDV vaccinia virus (VACV) acquires its membrane from open membrane intermediates, derived from the ER. These open membranes contribute to the formation of a single open membrane of the immature virion, shaped into a sphere by the assembly of the viral scaffold protein on its convex side. We now compare VACV with the NCLDV Mimivirus by TEM and ET and show that the latter also acquires its membrane from open membrane intermediates that accumulate at the periphery of the cytoplasmic VF. In analogy to VACV this membrane is shaped by the assembly of a layer on the convexside of its membrane, likely representing the Mimivirus capsid protein. By quantitative ET we show for both viruses that the open membrane intermediates of assembly adopt an 'open-eight' conformation with a characteristic diameter of 90 nm for Mimi- and 50 nm for VACV. We discuss these results with respect to the common ancestry of NCLDVs and propose a hypothesis on the possible origin of this unusual membrane biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Mimiviridae/fisiologia , Vaccinia virus/fisiologia , Montagem de Vírus , Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Mimiviridae/ultraestrutura , Vaccinia virus/ultraestrutura , Proteínas Virais/metabolismo
7.
Blood ; 119(3): 786-97, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22123847

RESUMO

The Nef protein of HIV-1 facilitates viral replication and disease progression in vivo. Nef disturbs the organization of immunological synapses between infected CD4(+) T lymphocytes and antigen-presenting B-lymphocytes to interfere with TCR proximal signaling. Paradoxically, Nef enhances distal TCR signaling in infected CD4(+) T lymphocytes, an effect thought to be involved in its role in AIDS pathogenesis. Using quantitative confocal microscopy and cell fractionation of Nef-expressing cells and HIV-1-infected primary human T lymphocytes, we found that Nef induces intracellular compartmentalization of TCR signaling to adjust TCR responses to antigenic stimulation. Nef reroutes kinase-active pools of the TCR signaling master switch Lck away from the plasma membrane (PM) to the trans-Golgi network (TGN), thereby preventing the recruitment of active Lck to the immunological synapse after TCR engagement and limiting signal initiation at the PM. Instead, Nef triggers Lck-dependent activation of TGN-associated Ras-Erk signaling to promote the production of the T lymphocyte survival factor IL-2 and to enhance virus spread. Overexpression of the Lck PM transporter Unc119 restores Nef-induced subversions of Lck trafficking and TCR signaling. Nef therefore hijacks Lck sorting to selectively activate TGN-associated arms of compartmentalized TCR signaling. By tailoring T-lymphocyte responses to antigenic stimulation, Nef optimizes the environment for HIV-1 replication.


Assuntos
Linfócitos B/imunologia , Sinapses Imunológicas/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Rede trans-Golgi/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Comunicação Celular , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Interleucina-2/metabolismo , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo , Linfócitos T/virologia , Replicação Viral/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
8.
PLoS One ; 6(7): e22007, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799764

RESUMO

Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches.Here we describe the construction and characterization of the HIV derivative HIV(SNAP), which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP) represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Sondas Moleculares/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Espaço Intracelular/metabolismo , Sondas Moleculares/química , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Internalização do Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
9.
J Biol Chem ; 286(4): 3018-32, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21056986

RESUMO

A hallmark of hepatitis C virus (HCV) particles is their association with host cell lipids, most notably lipoprotein components. It is thought that this property accounts for the low density of virus particles and their large heterogeneity. However, the composition of infectious virions and their biochemical and morphological properties are largely unknown. We developed a system in which the envelope glycoprotein E2 was N-terminally tagged with a FLAG epitope. This virus, designated Jc1E2(FLAG), produced infectivity titers to wild type levels and allowed affinity purification of virus particles that were analyzed for their protein and lipid composition. By using mass spectrometry, we found the lipid composition of Jc1E2(FLAG) particles to resemble the one very low- and low density-lipoprotein with cholesteryl esters accounting for almost half of the total HCV lipids. Thus, HCV particles possess a unique lipid composition that is very distinct from all other viruses analyzed so far and from the human liver cells in which HCV was produced. By electron microscopy (EM), we found purified Jc1E2(FLAG) particles to be heterogeneous, mostly spherical structures, with an average diameter of about 73 nm. Importantly, the majority of E2-containing particles also contained apoE on their surface as assessed by immuno-EM. Taken together, we describe a rapid and efficient system for the production of large quantities of affinity-purified HCV allowing a comprehensive analysis of the infectious virion, including the determination of its lipid composition.


Assuntos
Glicoproteínas/metabolismo , Hepacivirus/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Hepacivirus/química , Hepacivirus/genética , Humanos , Lipídeos de Membrana/análise , Lipídeos de Membrana/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
10.
Cell Host Microbe ; 5(4): 365-75, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19380115

RESUMO

Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.


Assuntos
Vírus da Dengue/fisiologia , Vírus da Dengue/ultraestrutura , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Montagem de Vírus , Replicação Viral , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica
11.
PLoS Pathog ; 4(3): e1000035, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369481

RESUMO

Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/química , Hepacivirus/ultraestrutura , Antígenos da Hepatite C/análise , Antígenos da Hepatite C/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Viral/metabolismo , Proteínas do Core Viral/análise , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/química
12.
PLoS Pathog ; 3(3): e36, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17381240

RESUMO

HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red-positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane-derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages.


Assuntos
Membrana Celular/virologia , HIV-1/crescimento & desenvolvimento , Macrófagos/virologia , Morfogênese/fisiologia , Antígenos CD/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Endossomos/ultraestrutura , Ouro , HIV-1/fisiologia , Humanos , Proteína Kangai-1/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Dados de Sequência Molecular , Glicoproteínas da Membrana de Plaquetas/metabolismo , Rutênio Vermelho , Tetraspanina 28 , Tetraspanina 30 , Vacúolos/ultraestrutura , Vacúolos/virologia
13.
J Biol Chem ; 282(12): 8873-82, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17276984

RESUMO

Dengue virus (DV) is a positive sense RNA virus replicating in the cytoplasm in membranous compartments that are induced by viral infection. The non-structural protein (NS) 4A is one of the least characterized DV proteins. It is highly hydrophobic with its C-terminal region (designated 2K fragment) serving as a signal sequence for the translocation of the adjacent NS4B into the endoplasmic reticulum (ER) lumen. In this report, we demonstrate that NS4A associates with membranes via 4 internal hydrophobic regions, which are all able to mediate membrane targeting of a cytosolic reporter protein. We also developed a model for the membrane topology of NS4A in which the N-terminal third of NS4A localizes to the cytoplasm, while the remaining part contains three transmembrane segments, with the C-terminal end localized in the ER lumen. Subcellular localization experiments in DV-infected cells revealed that NS4A resides primarily in ER-derived cytoplasmic dot-like structures that also contain dsRNA and other DV proteins, suggesting that NS4A is a component of the membrane-bound viral replication complex (RC). Interestingly, the individual expression of DV NS4A lacking the 2K fragment resulted in the induction of cytoplasmic membrane alterations resembling virus-induced structures, whereas expression of full-length NS4A does not induce comparable membrane alterations. Thus, proteolytic removal of the 2K peptide appears to be important for induction of membrane alterations that may harbor the viral RC. These results shed new light on the role of NS4A in the DV replication cycle and provide a model of how this protein induces membrane rearrangements and how this property may be regulated.


Assuntos
Membrana Celular/metabolismo , Vírus da Dengue/metabolismo , Regulação Viral da Expressão Gênica , Proteínas não Estruturais Virais/biossíntese , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Microscopia Confocal , Modelos Biológicos , Modelos Genéticos , Estrutura Terciária de Proteína , RNA/química , RNA Viral/química , Proteínas não Estruturais Virais/metabolismo
14.
Traffic ; 7(11): 1551-66, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17014699

RESUMO

The endosomal sorting complex required for transport (ESCRT) is thought to support the formation of intralumenal vesicles of multivesicular bodies (MVBs). The ESCRT is also required for the budding of HIV and has been proposed to be recruited to the HIV-budding site, the plasma membrane of T cells and MVBs in macrophages. Despite increasing data on the function of ESCRT, the ultrastructural localization of its components has not been determined. We therefore localized four proteins of the ESCRT machinery in human T cells and macrophages by quantitative electron microscopy. All the proteins were found throughout the endocytic pathway, including the plasma membrane, with only around 10 and 3% of the total labeling in the cytoplasm and on the MVBs, respectively. The majority of the labeling (45%) was unexpectedly found on tubular-vesicular endosomal membranes rather than on endosomes themselves. The ESCRT labeling was twice as concentrated on early and late endosomes/lysosomes in macrophages compared with that in T cells, where it was twice more abundant at the plasma membrane. The ESCRT proteins were not redistributed on HIV infection, suggesting that the amount of ESCRT proteins located at the budding site suffices for HIV release. These results represent the first systematic ultrastructural localization of ESCRT and provide insights into its role in uninfected and HIV-infected cells.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/ultraestrutura , HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Macrófagos/virologia , Microscopia Eletrônica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura , Linfócitos T/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Vesículas Transportadoras/ultraestrutura , Proteínas de Transporte Vesicular/genética , Vírion/metabolismo
15.
J Virol ; 80(24): 12260-70, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035321

RESUMO

African swine fever virus (ASFV) protein pB602L has been described as a molecular chaperone for the correct folding of the major capsid protein p72. We have studied the function of protein pB602L during the viral assembly process by using a recombinant ASFV, vB602Li, which inducibly expresses the gene coding for this protein. We show that protein pB602L is a late nonstructural protein, which, in contrast with protein p72, is excluded from the viral factory. Repression of protein pB602L synthesis inhibits the proteolytic processing of the two viral polyproteins pp220 and pp62 and leads to a decrease in the levels of protein p72 and a delocalization of the capsid protein pE120R. As shown by electron microscopy analysis of cells infected with the recombinant virus vB602Li, the viral assembly process is severely altered in the absence of protein pB602L, with the generation of aberrant "zipper-like" structures instead of icosahedral virus particles. These "zipper-like" structures are similar to those found in cells infected under restrictive conditions with the recombinant virus vA72 inducibly expressing protein p72. Immunoelectron microscopy studies show that the abnormal forms generated in the absence of protein pB602L contain the inner envelope protein p17 and the two polyproteins but lack the capsid proteins p72 and pE120R. These findings indicate that protein pB602L is essential for the assembly of the icosahedral capsid of the virus particle.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Capsídeo/fisiologia , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/ultraestrutura , Animais , Northern Blotting , Western Blotting , Chlorocebus aethiops , Primers do DNA , Técnica Indireta de Fluorescência para Anticorpo , Imunoprecipitação , Microscopia Imunoeletrônica , Plasmídeos/genética , Poliproteínas/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia
16.
J Virol ; 80(23): 11456-66, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005638

RESUMO

The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus morphogenesis. We show that protein pB438L associates with membranes during the infection, behaving as an integral membrane protein. Using a recombinant ASFV that inducibly expresses protein pB438L, we have determined that this structural protein is essential for the formation of infectious virus particles. In the absence of the protein, the virus assembly sites contain, instead of icosahedral particles, large aberrant tubular structures of viral origin as well as bilobulate forms that present morphological similarities with the tubules. The filamentous particles, which possess an aberrant core shell domain and an inner envelope, are covered by a capsid-like layer that, although containing the major capsid protein p72, does not acquire icosahedral morphology. This capsid, however, is to some extent functional, as the filamentous particles can move from the virus assembly sites to the plasma membrane and exit the cell by budding. The finding that, in the absence of protein pB438L, the viral particles formed have a tubular structure in which the icosahedral symmetry is lost supports a role for this protein in the construction or stabilization of the icosahedral vertices of the virus particle.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus Defeituosos/fisiologia , Regulação Viral da Expressão Gênica , Inativação Gênica/fisiologia , Proteínas Estruturais Virais/fisiologia , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/ultraestrutura , Animais , Capsídeo/química , Capsídeo/metabolismo , Chlorocebus aethiops , Microscopia Eletrônica , Células Vero , Proteínas Estruturais Virais/química
17.
J Interferon Cytokine Res ; 26(9): 650-60, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16978069

RESUMO

Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis- Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.


Assuntos
Retículo Endoplasmático Liso/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Vírus de RNA/imunologia , Animais , Biomarcadores/metabolismo , Fracionamento Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático Liso/ultraestrutura , Endossomos/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Zíper de Leucina , Glicoproteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Proteínas de Resistência a Myxovirus , Proteínas Qa-SNARE/metabolismo , Transferrina/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo
18.
J Virol ; 76(16): 8318-34, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134037

RESUMO

It has previously been shown that upon infection of HeLa cells with modified vaccinia virus Ankara (MVA), assembly is blocked at a late stage of infection and immature virions (IVs) accumulate (G. Sutter and B. Moss, Proc. Natl. Acad. Sci. USA 89:10847-10851, 1992). In the present study the morphogenesis of MVA in HeLa cells was studied in more detail and compared to that under two conditions that permit the production of infectious particles: infection of HeLa cells with the WR strain of vaccinia virus (VV) and infection of BHK cells with MVA. Using several quantitative and qualitative assays, we show that early in infection, MVA in HeLa cells behaves in a manner identical to that under the permissive conditions. By immunofluorescence microscopy (IF) at late times of infection, the labelings for an abundant membrane protein of the intracellular mature virus, p16/A14L, and the viral DNA colocalize under permissive conditions, whereas in HeLa cells infected with MVA these two structures do not colocalize to the same extent. In both permissive and nonpermissive infection, p16-labeled IVs first appear at 5 h postinfection. In HeLa cells infected with MVA, IVs accumulated predominantly outside the DNA regions, whereas under permissive conditions they were associated with the viral DNA. At 4 h 30 min, the earliest time at which p16 is detected, the p16 labeling was found predominantly in a small number of distinct puncta by IF, which were distinct from the sites of DNA in both permissive and nonpermissive infection. By electron microscopy, no crescents or IVs were found at this time, and the p16-labeled structures were found to consist of membrane-rich vesicles that were in continuity with the cellular endoplasmic reticulum. Over the next 30 min of infection, a large number of p16-labeled crescents and IVs appeared abruptly under both permissive and nonpermissive conditions. Under permissive conditions, these IVs were in close association with the sites of DNA, and a significant amount of these IVs engulfed the viral DNA. In contrast, under nonpermissive conditions, the IVs and DNA were mostly in separate locations and relatively few IVs acquired DNA. Our data show that in HeLa cells MVA forms normal DNA replication sites and normal viral precursor membranes but the transport between these two structures is inhibited.


Assuntos
Vaccinia virus/crescimento & desenvolvimento , Animais , Linhagem Celular , Cricetinae , Replicação do DNA , DNA Viral/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Microscopia Imunoeletrônica , Vaccinia virus/fisiologia , Vaccinia virus/ultraestrutura , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus
19.
J Virol ; 76(10): 5167-83, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967332

RESUMO

Virus assembly, a late event in the life cycle of vaccinia virus (VV), is preceded by a number of steps that all occur in the cytoplasm of the infected host cell: virion entry, delivery of the viral core into the cytoplasm, and transcription from these cores of early mRNAs, followed by the process of DNA replication. In the present study the quantitative and structural relationships between these distinct steps of VV morphogenesis were investigated. We show that viral RNA and DNA synthesis increases linearly with increasing amounts of incoming cores. Moreover, at multiplicities of infection that result in 10 to 40 cores per cell, an approximately 1:1 ratio between cores and sites of DNA replication exists, suggesting that each core is infectious. We have shown previously that VV early mRNAs collect in distinct granular structures that recruit components of the host cell translation machinery. Strikingly, these structures appeared to form some distance away from intracellular cores (M. Mallardo, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:3875-3891, 2001). In the present study the intracellular locations of the sites of early mRNA accumulation and those of the subsequent process of DNA replication were compared. We show that these are distinct structures that have different intracellular locations. Finally, we study the fate of the parental DNA after core uncoating. By electron microscopy, cores were found close to membranes of the endoplasmic reticulum (ER) and the parental DNA, once it had left the core, appeared to associate preferentially with the cytosolic side of those membranes. Since we have previously shown that the process of DNA replication occurs in an ER-enclosed cytosolic "subcompartment" (N. Tolonen, L. Doglio, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:2031-2046, 2001), the present data suggest that the parental DNA is released into the cytosol and associates with the same membranes where DNA replication is subsequently initiated. The combined data are discussed with respect to the cytosolic organization of VV morphogenesis.


Assuntos
Replicação do DNA , DNA Viral/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Vaccinia virus/fisiologia , Proteínas do Core Viral/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Células HeLa , Humanos , Vaccinia virus/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA