RESUMO
Early diagnosis of melanoma is critical for improved survival. However, the biomarkers of early melanoma evolution and their origin within the tumor and its microenvironment, including the keratinocytes, are poorly defined. To address this, we used spatial transcript profiling that maintains the morphological tumor context to measure the expression of >1,000 RNAs in situ in patient-derived formalin-fixed, paraffin-embedded tissue sections in primary melanoma and melanocytic nevi. We profiled 134 regions of interest (each 200 µm in diameter) enriched in melanocytes, neighboring keratinocytes, or immune cells. This approach captured distinct expression patterns across cell types and tumor types during melanoma development. Unexpectedly, we discovered that S100A8 is expressed by keratinocytes within the tumor microenvironment during melanoma growth. Immunohistochemistry of 252 tumors showed prominent keratinocyte-derived S100A8 expression in melanoma but not in benign tumors and confirmed the same pattern for S100A8's binding partner S100A9, suggesting that injury to the epidermis may be an early and readily detectable indicator of melanoma development. Together, our results establish a framework for high-plex, spatial, and cell typeâspecific resolution of gene expression in archival tissue applicable to the development of biomarkers and characterization of tumor microenvironment interactions in tumor evolution.
Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Biomarcadores/metabolismo , Calgranulina A/genética , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Nevo Pigmentado/patologia , RNA/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genéticaRESUMO
The addition of HER2-targeted agents to neoadjuvant chemotherapy has dramatically improved pathological complete response (pCR) rates in early-stage, HER2-positive breast cancer. Nonetheless, up to 50% of patients have residual disease after treatment, while others are likely overtreated. Here, we performed multiplex spatial proteomic characterization of 122 samples from 57 HER2-positive breast tumors from the neoadjuvant TRIO-US B07 clinical trial sampled pre-treatment, after 14-21 d of HER2-targeted therapy and at surgery. We demonstrated that proteomic changes after a single cycle of HER2-targeted therapy aids the identification of tumors that ultimately undergo pCR, outperforming pre-treatment measures or transcriptomic changes. We further developed and validated a classifier that robustly predicted pCR using a single marker, CD45, measured on treatment, and showed that CD45-positive cell counts measured via conventional immunohistochemistry perform comparably. These results demonstrate robust biomarkers that can be used to enable the stratification of sensitive tumors early during neoadjuvant HER2-targeted therapy, with implications for tailoring subsequent therapy.
Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Proteômica , Receptor ErbB-2/genética , TrastuzumabRESUMO
Metastatic prostate cancer (mPC) comprises a spectrum of diverse phenotypes. However, the extent of inter- and intra-tumor heterogeneity is not established. Here we use digital spatial profiling (DSP) technology to quantitate transcript and protein abundance in spatially-distinct regions of mPCs. By assessing multiple discrete areas across multiple metastases, we find a high level of intra-patient homogeneity with respect to tumor phenotype. However, there are notable exceptions including tumors comprised of regions with high and low androgen receptor (AR) and neuroendocrine activity. While the vast majority of metastases examined are devoid of significant inflammatory infiltrates and lack PD1, PD-L1 and CTLA4, the B7-H3/CD276 immune checkpoint protein is highly expressed, particularly in mPCs with high AR activity. Our results demonstrate the utility of DSP for accurately classifying tumor phenotype, assessing tumor heterogeneity, and identifying aspects of tumor biology involving the immunological composition of metastases.