Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 289(41): 28399-410, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25147183

RESUMO

Insect ß-glucan recognition protein (ßGRP), a pathogen recognition receptor for innate immune responses, detects ß-1,3-glucan on fungal surfaces via its N-terminal carbohydrate-binding domain (N-ßGRP) and triggers serine protease cascades for the activation of prophenoloxidase (pro-PO) or Toll pathways. Using biophysical and biochemical methods, we characterized the interaction of the N-terminal domain from Manduca sexta ßGRP2 (N-ßGRP2) with laminarin, a soluble form of ß-1,3-glucan. We found that carbohydrate binding by N-ßGRP2 induces the formation of two types of protein-carbohydrate complexes, depending on the molar ratio of carbohydrate to protein ([C]/[P]). Precipitation, analytical ultracentrifugation, and chemical cross-linking experiments have shown that an insoluble aggregate forms when the molar ratio of carbohydrate to protein is low ([C]/[P] ∼ 1). In contrast, a soluble complex, containing at least five N-ßGRP2 molecules forms at a higher molar ratio of carbohydrate/protein ([C]/[P] >5). A hypothesis that this complex is assembled partly due to protein-protein interactions was supported by chemical cross-linking experiments combined with LC-MS/MS spectrometry analysis, which permitted identification of a specific intermolecular cross-link site between N-ßGRP molecules in the soluble complex. The pro-PO activation in naive plasma was strongly stimulated by addition of the insoluble aggregates of N-ßGRP2. The soluble complex with laminarin formed in the plasma also stimulated pro-PO activation, but at a lower level. Taken together, these results provide experimental evidence for novel mechanisms in which associations of ßGRP with microbial polysaccharide promotes assembly of ßGRP oligomers, which may form a platform needed to trigger the pro-PO pathway activation cascade.


Assuntos
Proteínas de Transporte/química , Precursores Enzimáticos/química , Polissacarídeos Fúngicos/química , Glucanos/química , Proteínas de Insetos/química , Manduca/genética , Monofenol Mono-Oxigenase/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Polissacarídeos Fúngicos/imunologia , Regulação da Expressão Gênica/imunologia , Glucanos/imunologia , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Manduca/imunologia , Manduca/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
2.
Biochemistry ; 41(14): 4546-53, 2002 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-11926815

RESUMO

Hydrolysis of phospholipids by plant phospholipase Dbeta (PLDbeta) requires phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here we show that PLDbeta is stimulated by different polyphosphoinositides, among which PI(4,5)P2 is most effective. On the basis of amino acid sequence analysis, PI(4,5)P2 binding assay, and protein engineering studies, we have identified in the catalytic region of PLDbeta a new PI(4,5)P2 binding region (PBR1), which is conserved in eukaryotic PLDs. PBR1 is a second domain besides the previously characterized N-terminal C2 domain of PLDbeta which also binds PI(4,5)P2. Submillimolar levels of calcium ions, while inhibiting PI(4,5)P2 binding by the C2 domain, enhanced the affinity of PBR1 for that phosphoinositide. Substrate binding by PLDbeta was promoted by PI(4,5)P2-bound PBR1. Isolated, recombinant PBR1 bound PI(4,5)P2 specifically and in a saturable manner. Deletion of PBR1 from PLDbeta or mutation of the conserved basic amino acid residues in PBR1 (K437G/K440G) abolished the enzymatic activity. Circular dichroism spectroscopy revealed a conformational change caused by PI(4,5)P2 binding to the catalytic region of PLD. The conformational change apparently helps in the recruitment of the substrate to the active site of the enzyme. The results taken together allow us to describe an anchorage-scooting model for the synergistic activation of PLDbeta by PI(4,5)P2 and Ca2+.


Assuntos
Fosfatidilinositol 4,5-Difosfato/farmacologia , Fosfolipase D/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Dicroísmo Circular , Drosophila melanogaster , Ativação Enzimática , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/farmacologia , Fosfolipase D/química , Plasmídeos , Conformação Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA