Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(6): 110346, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139375

RESUMO

Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.


Assuntos
Adenosina Trifosfatases/metabolismo , Transporte Biológico/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas SecA/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Canais de Translocação SEC/metabolismo
2.
Anal Chem ; 93(38): 12840-12847, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523340

RESUMO

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to monitor protein intrinsic dynamics. The technique provides high-resolution information on how protein intrinsic dynamics are altered in response to biological signals, such as ligand binding, oligomerization, or allosteric networks. However, identification, interpretation, and visualization of such events from HDX-MS data sets is challenging as these data sets consist of many individual data points collected across peptides, time points, and experimental conditions. Here, we present PyHDX, an open-source Python package and webserver, that allows the user to batch extract the universal quantity Gibbs free energy at residue levels over multiple protein conditions and homologues. The output is directly visualized on a linear map or 3D structures or is exported as .csv files or PyMOL scripts.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério , Peptídeos , Proteínas
3.
EMBO Rep ; 21(6): e49054, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32307852

RESUMO

Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.


Assuntos
Proteínas de Escherichia coli , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibrinogênio , Ligação Proteica , Canais de Translocação SEC/genética , Via Secretória
4.
Biophys J ; 112(12): 2552-2566, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636912

RESUMO

Spatiotemporal control of the cAMP signaling pathway is governed by both hormonal stimulation of cAMP generation by adenylyl cyclases (activation phase) and cAMP hydrolysis by phosphodiesterases (PDEs) (termination phase). The termination phase is initiated by PDEs actively targeting the protein kinase A (PKA) R-subunit through formation of a PDE-PKAR-cyclic adenosine monophosphate (cAMP) complex (the termination complex). Our results using PDE8 as a model PDE, reveal that PDEs mediate active hydrolysis of cAMP bound to its receptor RIα by enhancing the enzymatic activity. This accelerated cAMP turnover occurs via formation of a stable PDE8-RIα complex, where the protein-protein interface forms peripheral contacts and the central ligand cements this ternary interaction. The basis for enhanced catalysis is active translocation of cAMP from its binding site on RIα to the hydrolysis site on PDE8 through direct "channeling." Our results reveal cAMP channeling in the PDE8-RIα complex and a molecular description of how this channel facilitates processive hydrolysis of unbound cAMP. Thus, unbound cAMP maintains the PDE8-RIα complex while being hydrolyzed, revealing an undiscovered mode for amplification of PKA activity by cAMP-mediated sequestration of the R-subunit by PDEs. This novel regulatory mode explains the paradox of cAMP signal amplification by accelerated PDE-mediated cAMP turnover. This highlights how target effector proteins of small-molecule ligands can promote enzyme-mediated ligand hydrolysis by scaffolding effects. Enhanced activity of the PDE8-RIα complex facilitates robust desensitization, allowing the cell to respond to dynamic levels of cAMP rather than steady-state levels. The PDE8-RIα complex represents a new class of PDE-based complexes for specific drug discovery targeting the cAMP signaling pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Medição da Troca de Deutério , Escherichia coli , Polarização de Fluorescência , Hidrólise , Cinética , Espectrometria de Massas , Diester Fosfórico Hidrolases/química , Estabilidade Proteica , Transdução de Sinais , Espectrometria de Fluorescência
5.
Biophys J ; 109(6): 1251-63, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276689

RESUMO

The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , AMP Cíclico/metabolismo , Proteínas de Protozoários/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/química , Regulação Alostérica , Sítios de Ligação , Calorimetria , AMP Cíclico/química , Dictyostelium , Escherichia coli , Cinética , Espectrometria de Massas , Conformação Proteica , Desdobramento de Proteína , Proteínas de Protozoários/química , Receptores de AMP Cíclico/química , Receptores de AMP Cíclico/metabolismo , Transdução de Sinais
6.
Biophys J ; 107(6): 1426-40, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229150

RESUMO

Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transdução de Sinais , Sequência Conservada , Humanos , Simulação de Acoplamento Molecular
7.
Structure ; 22(2): 230-7, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24361271

RESUMO

Most double-stranded DNA (dsDNA) viruses, including bacteriophages and herpesviruses, rely on a staged assembly process of capsid formation. A viral protease is required for many of them to disconnect scaffolding domains/proteins from the capsid shell, therefore priming the maturation process. We used the bacteriophage HK97 as a model system to decipher the molecular mechanisms underlying the recruitment of the maturation protease by the assembling procapsid and the influence exerted onto the latter. Comparisons of the procapsid with and without protease using single-particle cryoelectron microscopy reconstructions, hydrogen/deuterium exchange coupled to mass spectrometry, and native mass spectrometry demonstrated that the protease interacts with the scaffolding domains within the procapsid interior and stabilizes them as well as the whole particle. The results suggest that the thermodynamic consequences of protease packaging are to shift the equilibrium between isolated coat subunit capsomers and procapsid in favor of the latter by stabilizing the assembled particle before making the process irreversible through proteolysis of the scaffolding domains.


Assuntos
Bacteriófagos/química , Capsídeo/química , DNA/química , Peptídeo Hidrolases/química , Caudovirales/enzimologia , Microscopia Crioeletrônica , Espectrometria de Massas , Modelos Moleculares , Peptídeos/química , Estrutura Terciária de Proteína , Proteômica , Termodinâmica
8.
Biochim Biophys Acta ; 1834(6): 1215-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23501673

RESUMO

cAMP signaling is a fundamental cellular process necessary for mediating responses to hormonal stimuli. In contrast to cAMP-dependent activation of protein kinase A (PKA), an important cellular target, far less is known on termination in cAMP signaling, specifically how phosphodiesterases (PDEs) facilitate dissociation and hydrolysis of bound cAMP. In this study, we have probed the dynamics of a ternary complex of PKA and a PDE-RegA with an excess of a PDE-nonhydrolyzable cAMP analog, Sp-cAMPS by amide hydrogen/deuterium exchange mass spectrometry (HDXMS). Our results highlight how HDXMS can be used to monitor reactions together with mapping conformational dynamics of transient signaling complexes. Our results confirm a two-state model for active RegA-mediated dissociation of bound cAMP. Further, our results reveal that Sp-cAMPS and RegA mediate mutually exclusive interactions with the same region of PKA and at specific concentrations of Sp-cAMPS, RegA is capable of blocking Sp-cAMPS reassociation to PKA. This provides a molecular basis for how PDEs modulate levels of intracellular cAMP so that PKA is better suited to responding to fluxes rather than constant levels of cAMP. This study underscores how HDXMS can be a powerful tool for monitoring reactions together with mapping conformational dynamics in signaling proteins. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , AMP Cíclico/química , Diester Fosfórico Hidrolases/química , Fatores de Complexo Ternário/química , Amidas/química , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Deutério/química , Medição da Troca de Deutério/métodos , Hidrogênio/química , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Diester Fosfórico Hidrolases/metabolismo , Conformação Proteica , Transdução de Sinais
9.
Mol Cell Proteomics ; 9(10): 2225-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20167947

RESUMO

We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((S(p))-adenosine cyclic 3':5'-monophosphorothioate ((S(p))-cAMPS)) and the other a diastereoisomeric antagonist ((R(p))-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91-244)·C-subunit, by using fluorescence spectroscopy and amide H/(2)H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91-244), and the effects of cAMP, (S(p))-cAMPS, and (R(p))-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (R(p))-cAMPS on amide exchange of the RIα(91-244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91-244). Surprisingly, (R(p))-cAMPS not only increased the affinity of RIα(91-244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (R(p))-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (R(p))-cAMPS-induced increase in affinity of RIα(91-244) toward the C-subunit indicates that (R(p))-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Fluoresceína/química , Polarização de Fluorescência , Cinética , Modelos Moleculares , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA