Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 151: 106383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218046

RESUMO

Bone transplantation is the second most common transplantation surgery in the world. Therefore, there is an urgent need for artificial bone transplantation to repair bone defects. In bone tissue engineering, hydroxyapatite (HA) plays a major role in bone graft applications. This study deals with a facile method for synthesizing HA hexagonal nanorods from seashells by a solid-state hydrothermal transition process. The synthesized HA nanorods (∼2.29 nm) were reinforced with carbon nanotube and chitosan on graphene oxide sheets with polymeric support by in-situ synthetic approach. Among the synthesized nanocomposites viz., hydroxyapatite-graphene oxide (HA-GO), hydroxyapatite-graphene oxide-chitosan (HA-GO-CS), hydroxyapatite-graphene oxide-chitosan-carbon nanotube-polylactic acid (HA-GO-CS-CNT-PLA). Among them, the HA-GO-CS-CNT-PLA composite exhibits micro and macro porosity (∼200 to 600 µm), higher mechanical strength, (Hardness ∼90.5 ± 1.33 MPa; Tensile strength 25.62 MPa), and maximum cell viability in MG63 osteoblast-like cells (80%). The self-assembled hybrid-nanocomposite of HA-GO-CS-CNT-PLA is a promising material for bone filler application and could efficiently utilize seashell waste through the green process.


Assuntos
Quitosana , Grafite , Nanocompostos , Nanotubos de Carbono , Animais , Durapatita , Exoesqueleto , Medicina Regenerativa , Engenharia Tecidual , Poliésteres , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA