Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36930803

RESUMO

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Tempo de Sangramento , Plaquetas/metabolismo , Deleção de Genes , Homeostase/genética , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Trombose/genética
2.
Res Pract Thromb Haemost ; 5(5): e12532, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296056

RESUMO

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) was hosted virtually from Philadelphia July 17-21, 2021. The conference, now held annually, highlighted cutting-edge advances in basic, population and clinical sciences of relevance to the Society. Despite being held virtually, the 2021 congress was of the same scope and quality as an annual meeting held in person. An added feature of the program is that talks streamed at the designated times will then be available on-line for asynchronous viewing. The program included 77 State of the Art (SOA) talks, thematically grouped in 28 sessions, given by internationally recognized leaders in the field. The SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. The topics, across the main scientific themes of the congress, include Arterial Thromboembolism, Coagulation and Natural Anticoagulants, COVID-19 and Coagulation, Diagnostics and Omics, Fibrinogen, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostasis in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Angiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the congress.

3.
Nat Biotechnol ; 36(7): 606-613, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29863725

RESUMO

Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.


Assuntos
Anticoagulantes/administração & dosagem , Inibidores do Fator Xa/administração & dosagem , Fator Xa/química , Hemorragia Pós-Operatória/tratamento farmacológico , Anticoagulantes/química , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Ponte Cardiopulmonar/efeitos adversos , Cristalografia por Raios X , Combinação de Medicamentos , Fator Xa/genética , Inibidores do Fator Xa/química , Heparina/efeitos adversos , Humanos , Hemorragia Pós-Operatória/genética , Hemorragia Pós-Operatória/patologia , Conformação Proteica/efeitos dos fármacos
4.
Nat Commun ; 8(1): 1216, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084966

RESUMO

Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions.


Assuntos
Plaquetas/metabolismo , Neoplasias Pulmonares/secundário , Proteínas de Transferência de Fosfolipídeos/metabolismo , Trombose/metabolismo , Animais , Anticoagulantes/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Fibrina/metabolismo , Deleção de Genes , Hemostasia/efeitos dos fármacos , Hiperplasia , Imunidade nas Mucosas/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Integrases/metabolismo , Tecido Linfoide/patologia , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trombina/metabolismo , Trombose/patologia
5.
J Biol Chem ; 288(42): 30151-30160, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24014022

RESUMO

Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.


Assuntos
Fator Va/química , Fator Xa/química , Peptídeos/química , Proteólise , Fator Va/antagonistas & inibidores , Fator Va/genética , Fator Va/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
6.
J Biol Chem ; 285(37): 28651-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20639195

RESUMO

The critical and multiple roles of thrombin in blood coagulation are regulated by ligands and cofactors. Zymogen activation imparts proteolytic activity to thrombin and also affects the binding of ligands to its two principal exosites. We have used the activation peptide fragment 1.2 (F12), a ligand for anion-binding exosite 2, to probe the zymogenicity of thrombin by isothermal titration calorimetry. We show that F12 binding is sensitive to subtle aspects of proteinase formation beyond simply reporting on zymogen cleavage. Large thermodynamic differences in F12 binding distinguish between a series of thrombin species poised along the transition of zymogen to proteinase. Active-site ligands transitioned a zymogen-like state to a proteinase-like state. Conversely, removal of Na(+) converted proteinase-like thrombin to a more zymogen-like form. Thrombin mutants, with deformed x-ray structures, previously considered to be emblematic of specific regulated states of the enzyme, are instead shown to be variously zymogen-like and can be made proteinase-like by active-site ligation. Thermodynamic linkage between anion-binding exosite 2, the Na(+)-binding site, and the active site arises from interconversions of thrombin between a continuum of zymogen- and proteinase-like states. These interconversions, reciprocally regulated by different ligands, cast new light on the problem of thrombin allostery and provide a thermodynamic framework to explain the regulation of thrombin by different ligands.


Assuntos
Peptídeos/química , Protrombina/química , Trombina/química , Regulação Alostérica/fisiologia , Coagulação Sanguínea/fisiologia , Calorimetria , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Humanos , Ligantes , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Protrombina/genética , Protrombina/metabolismo , Trombina/genética , Trombina/metabolismo
7.
J Biol Chem ; 280(15): 15471-8, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15705565

RESUMO

The interaction of thrombin (IIa) with thrombomodulin (TM) is essential for the efficient activation of protein C (PC). Interactions between PC and extended surfaces, likely contributed by TM within the IIa.TM complex, have been proposed to play a key role in PC activation. Initial velocities of PC activation at different concentrations of PC and TM could be accounted for by a model that did not require consideration of direct binding interactions between PC and TM. Reversible inhibitors directed toward the active site of IIa within the IIa.TM complex behaved as classic competitive inhibitors of both peptidyl substrate cleavage as well as PC activation. The ability of these small molecule inhibitors to block PC binding to the enzyme points to a principal role for active site-dependent substrate recognition in determining the affinity of IIa.TM for its protein substrate. Selective abrogation of active site docking by mutation of the P1 Arg in PC to Gln yielded an uncleavable derivative (PC(R15Q)). PC(R15Q) was a poor inhibitor (K(i) >or= 30 microm) of PC activation as well as peptidyl substrate cleavage by IIa.TM. Thus, inhibition by PC(R15Q) most likely results from its ability to weakly interfere with active site function rather than by blocking extended interactions with the enzyme complex. The data suggest a primary role for active site-dependent substrate recognition in driving the affinity of the IIa.TM complex for its protein substrate. Interactions between PC and extended surfaces contributed by IIa and/or TM within the IIa.TM complex likely contribute in a secondary or minor way to protein substrate affinity.


Assuntos
Proteína C/química , Trombina/química , Trombomodulina/química , Antitrombinas/química , Sítios de Ligação , Ligação Competitiva , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Químicos , Mutação , Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Análise de Regressão , Especificidade por Substrato , Temperatura , Tromboplastina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA