Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 15(1): 6237, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043693

RESUMO

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.


Assuntos
Meduloblastoma , Polissacarídeos , Proteoma , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Polissacarídeos/metabolismo , Proteoma/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/genética , Metilação de DNA , Transcriptoma , Criança , Proteômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Pré-Escolar , Perfilação da Expressão Gênica/métodos
2.
Nat Commun ; 15(1): 4513, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802361

RESUMO

Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).


Assuntos
Biomarcadores Tumorais , Proteômica , Neoplasias da Bexiga Urinária , Humanos , Proteômica/métodos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Urotélio/patologia , Urotélio/metabolismo , Idoso , Prognóstico , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
3.
J Biol Chem ; 300(5): 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636657

RESUMO

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Assuntos
Anexina A3 , Hepacivirus , Hepatite C , Antígeno SS-B , Internalização do Vírus , Humanos , Anexina A3/metabolismo , Anexina A3/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatite C/genética , Interações Hospedeiro-Patógeno , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética
4.
Commun Biol ; 6(1): 1124, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932372

RESUMO

The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.


Assuntos
Coxiella burnetii , AMP Cíclico , Histonas , DNA , Serina
5.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733943

RESUMO

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Apoptose , Proliferação de Células , Receptores ErbB , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
6.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499277

RESUMO

Significant progress has been achieved in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, results in patients with aggressive variant prostate cancer (AVPC) have been disappointing. Here, we report retrospectively collected data from intensively pretreated AVPC patients (n = 17; 88.2% visceral metastases; 82% elevation of neuroendocrine markers) treated with salvage chemotherapy consisting of cisplatin, ifosfamide, and paclitaxel (TIP). At the interim analysis, 60% of patients showed radiographic response or stable disease (PFS = 2.5 months; OS = 6 months). In men who responded to chemotherapy, an OS > 15 months was observed. Preclinical analyses confirmed the high activity of the TIP regimen, especially in docetaxel-resistant prostate cancer cells. This effect was primarily mediated by increased cisplatin sensitivity in the emergence of taxane resistance. Proteomic and functional analyses identified a lower DNA repair capacity and cell cycle machinery deficiency to be causative. In contrast, paclitaxel showed inconsistent effects, partially antagonizing cisplatin and ifosfamide in some AVPC models. Consequently, paclitaxel has been excluded from the TIP combination for future patients. In summary, we report for the first time the promising efficacy of TIP as salvage therapy in AVPC. Our preclinical data indicate a pivotal role for cisplatin in overcoming docetaxel resistance.


Assuntos
Paclitaxel , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Paclitaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Estudos Retrospectivos , Proteômica , Cisplatino/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia de Salvação/métodos , Docetaxel/uso terapêutico , Resultado do Tratamento
7.
Anal Chem ; 94(31): 10893-10906, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880733

RESUMO

With increasing sensitivity and accuracy in mass spectrometry, the tumor phosphoproteome is getting into reach. However, the selection of quantitation techniques best-suited to the biomedical question and diagnostic requirements remains a trial and error decision as no study has directly compared their performance for tumor tissue phosphoproteomics. We compared label-free quantification (LFQ), spike-in-SILAC (stable isotope labeling by amino acids in cell culture), and tandem mass tag (TMT) isobaric tandem mass tags technology for quantitative phosphosite profiling in tumor tissue. Compared to the classic SILAC method, spike-in-SILAC is not limited to cell culture analysis, making it suitable for quantitative analysis of tumor tissue samples. TMT offered the lowest accuracy and the highest precision and robustness toward different phosphosite abundances and matrices. Spike-in-SILAC offered the best compromise between these features but suffered from a low phosphosite coverage. LFQ offered the lowest precision but the highest number of identifications. Both spike-in-SILAC and LFQ presented susceptibility to matrix effects. Match between run (MBR)-based analysis enhanced the phosphosite coverage across technical replicates in LFQ and spike-in-SILAC but further reduced the precision and robustness of quantification. The choice of quantitative methodology is critical for both study design such as sample size in sample groups and quantified phosphosites and comparison of published cancer phosphoproteomes. Using ovarian cancer tissue as an example, our study builds a resource for the design and analysis of quantitative phosphoproteomic studies in cancer research and diagnostics.


Assuntos
Neoplasias Ovarianas , Proteômica , Feminino , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Neoplasias Ovarianas/diagnóstico , Proteoma/química , Proteômica/métodos
8.
Acta Neuropathol Commun ; 9(1): 185, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801069

RESUMO

LIN28A overexpression has been identified in malignant brain tumors called embryonal tumors with multilayered rosettes (ETMR) but its specific role during brain development remains largely unknown. Radial glia cells of the ventricular zone (VZ) are proposed as a cell of origin for ETMR. We asked whether an overexpression of LIN28A in such cells might affect brain development or result in the formation of brain tumors.Constitutive overexpression of LIN28A in hGFAP-cre::lsl-Lin28A (GL) mice led to a transient increase of proliferation in the cortical VZ at embryonic stages but no postnatal brain tumor formation. Postnatally, GL mice displayed a pyramidal cell layer dispersion of the hippocampus and altered spine and dendrite morphology, including reduced dendritic spine densities in the hippocampus and cortex. GL mice displayed hyperkinetic activity and differential quantitative MS-based proteomics revealed altered time dependent molecular functions regarding mRNA processing and spine morphogenesis. Phosphoproteomic analyses indicated a downregulation of mTOR pathway modulated proteins such as Map1b being involved in microtubule dynamics.In conclusion, we show that Lin28A overexpression transiently increases proliferation of neural precursor cells but it is not sufficient to drive brain tumors in vivo. In contrast, Lin28A impacts on protein abundancy patterns related to spine morphogenesis and phosphorylation levels of proteins involved in microtubule dynamics, resulting in decreased spine densities of neurons in the hippocampus and cortex as well as in altered behavior. Our work provides new insights into the role of LIN28A for neuronal morphogenesis and development and may reveal future targets for treatment of ETMR patients.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Embrionárias de Células Germinativas/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/biossíntese , Medula Espinal/patologia , Animais , Proliferação de Células , Córtex Cerebral/patologia , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microtúbulos/patologia , Microtúbulos/ultraestrutura , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Neurais/patologia , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1862(9): 148448, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015258

RESUMO

Complexome profiling is a rapidly spreading, powerful technique to gain insight into the nature of protein complexes. It identifies and quantifies protein complexes separated into multiple fractions of increasing molecular mass using mass spectrometry-based, label-free bottom-up proteomics. Complexome profiling enables a sophisticated and thorough characterization of the composition, molecular mass, assembly, and interactions of protein complexes. However, in practice, its application is limited by the large number of samples it generates and the related time of mass spectrometry analyses. Here, we report an improved process workflow that implements tandem mass tags for multiplexing complexome profiling. This workflow substantially reduces the number of samples and measuring time without compromising protein identification or quantification reliability. In profiles from mitochondrial fractions of cells recovering from chloramphenicol treatment, tandem mass tags-multiplexed complexome profiling exhibited migration patterns of mature ATP synthase (complex V) and assembly intermediates that were consistent in composition and abundance with profiles obtained by the label-free approach. Reporter ion quantifications of proteins and complexes unaffected by the chloramphenicol treatment presented less variation in comparison to the label-free method. Incorporation of tandem mass tags enabled an efficient and robust complexome profiling analysis and may foster broader application for protein complex profiling in biomedical research and diagnostics.


Assuntos
Cloranfenicol/química , ATPases Mitocondriais Próton-Translocadoras/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Peptídeos/química , Reprodutibilidade dos Testes , Coloração e Rotulagem , Fatores de Tempo
10.
Nat Commun ; 12(1): 2426, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893288

RESUMO

To adapt to fluctuating protein folding loads in the endoplasmic reticulum (ER), the Hsp70 chaperone BiP is reversibly modified with adenosine monophosphate (AMP) by the ER-resident Fic-enzyme FICD/HYPE. The structural basis for BiP binding and AMPylation by FICD has remained elusive due to the transient nature of the enzyme-substrate-complex. Here, we use thiol-reactive derivatives of the cosubstrate adenosine triphosphate (ATP) to covalently stabilize the transient FICD:BiP complex and determine its crystal structure. The complex reveals that the TPR-motifs of FICD bind specifically to the conserved hydrophobic linker of BiP and thus mediate specificity for the domain-docked conformation of BiP. Furthermore, we show that both AMPylation and deAMPylation of BiP are not directly regulated by the presence of unfolded proteins. Together, combining chemical biology, crystallography and biochemistry, our study provides structural insights into a key regulatory mechanism that safeguards ER homeostasis.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Repetições de Tetratricopeptídeos , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/química , Homeostase , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
11.
J Hepatol ; 74(2): 407-418, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32987028

RESUMO

BACKGROUND & AIMS: Interleukin (IL)-6 cytokine family members contribute to inflammatory and regenerative processes. Engagement of the signaling receptor subunit gp130 is common to almost all members of the family. In the liver, all major cell types respond to IL-6-type cytokines, making it difficult to delineate cell type-specific effects. We therefore generated mouse models for liver cell type-specific analysis of IL-6 signaling. METHODS: We produced mice with a Cre-inducible expression cassette encoding a designed pre-dimerized constitutive active gp130 variant. We bred these mice to different Cre-drivers to induce transgenic gp130 signaling in distinct liver cell types: hepatic stellate cells, cholangiocytes/liver progenitor cells or hepatocytes. We phenotyped these mice using multi-omics approaches, immunophenotyping and a bacterial infection model. RESULTS: Hepatocyte-specific gp130 activation led to the upregulation of innate immune system components, including acute-phase proteins. Consequently, we observed peripheral mobilization and recruitment of myeloid cells to the liver. Hepatic myeloid cells, including liver-resident Kupffer cells were instructed to adopt a bactericidal phenotype which ultimately conferred enhanced resistance to bacterial infection in these mice. We demonstrate that persistent hepatocyte-specific gp130 activation resulted in amyloid A amyloidosis in aged mice. In contrast, we did not observe overt effects of hepatic stellate cell- or cholangiocyte/liver progenitor cell-specific transgenic gp130 signaling. CONCLUSIONS: Hepatocyte-specific gp130 activation alone is sufficient to trigger a robust innate immune response in the absence of NF-κB activation. We therefore conclude that gp130 engagement, e.g. by IL-6 trans-signaling, represents a safe-guard mechanism in innate immunity. LAY SUMMARY: Members of the interleukin-6 cytokine family signal via the receptor subunit gp130 and are involved in multiple processes in the liver. However, as several liver cell types respond to interleukin-6 family cytokines, it is difficult to delineate cell type-specific effects. Using a novel mouse model, we provide evidence that hepatocyte-specific gp130 activation is sufficient to trigger a robust systemic innate immune response.


Assuntos
Receptor gp130 de Citocina/metabolismo , Hepatócitos/metabolismo , Imunidade Inata/fisiologia , Interleucina-6/imunologia , Fígado , Fator de Transcrição STAT3/metabolismo , Reação de Fase Aguda/imunologia , Animais , Hepatócitos/classificação , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Transdução de Sinais/imunologia
12.
J Exp Clin Cancer Res ; 39(1): 205, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998758

RESUMO

BACKGROUND: The survival rate is poor in breast cancer patients with brain metastases. Thus, new concepts for therapeutic approaches are required. During metastasis, the cytoskeleton of cancer cells is highly dynamic and therefore cytoskeleton-associated proteins are interesting targets for tumour therapy. METHODS: Screening for genes showing a significant correlation with brain metastasis formation was performed based on microarray data from breast cancer patients with long-term follow up information. Validation of the most interesting target was performed by MTT-, Scratch- and Transwell-assay. In addition, intracellular trafficking was analyzed by live-cell imaging for secretory vesicles, early endosomes and multiple vesicular bodies (MVB) generating extracellular vesicles (EVs). EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western blotting, mass spectrometry, and ingenuity pathway analysis (IPA). Effect of EVs on the blood-brain-barrier (BBB) was examined by incubating endothelial cells of the BBB (hCMEC/D3) with EVs, and permeability as well as adhesion of breast cancer cells were analyzed. Clinical data of a breast cancer cohort was evaluated by χ2-tests, Kaplan-Meier-Analysis, and log-rank tests while for experimental data Student's T-test was performed. RESULTS: Among those genes exhibiting a significant association with cerebral metastasis development, the only gene coding for a cytoskeleton-associated protein was Tubulin Tyrosine Ligase Like 4 (TTLL4). Overexpression of TTLL4 (TTLL4plus) in MDA-MB231 and MDA-MB468 breast cancer cells (TTLL4plus cells) significantly increased polyglutamylation of ß-tubulin. Moreover, trafficking of secretory vesicles and MVBs was increased in TTLL4plus cells. EVs derived from TTLL4plus cells promote adhesion of MDA-MB231 and MDA-MB468 cells to hCMEC/D3 cells and increase permeability of hCMEC/D3 cell layer. CONCLUSIONS: These data suggest that TTLL4-mediated microtubule polyglutamylation alters exosome homeostasis by regulating trafficking of MVBs. The TTLL4plus-derived EVs may provide a pre-metastatic niche for breast cancer cells by manipulating endothelial cells of the BBB.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Exossomos/genética , Peptídeo Sintases/genética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citoesqueleto/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/genética , Feminino , Humanos , Metástase Neoplásica , Peptídeos/genética
13.
PLoS Pathog ; 16(10): e1008546, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031466

RESUMO

Cytomegaloviruses (CMV) infect many different cell types and tissues in their respective hosts. Monocytes and macrophages play an important role in CMV dissemination from the site of infection to target organs. Moreover, macrophages are specialized in pathogen sensing and respond to infection by secreting cytokines and interferons. In murine cytomegalovirus (MCMV), a model for human cytomegalovirus, several genes required for efficient replication in macrophages have been identified, but their specific functions remain poorly understood. Here we show that MCMV m139, a gene of the conserved US22 gene family, encodes a protein that interacts with the DEAD box helicase DDX3, a protein involved in pathogen sensing and interferon (IFN) induction, and the E3 ubiquitin ligase UBR5. DDX3 and UBR5 also participate in the transcription, processing, and translation of a subset of cellular mRNAs. We show that m139 inhibits DDX3-mediated IFN-α and IFN-ß induction and is necessary for efficient viral replication in bone-marrow derived macrophages. In vivo, m139 is crucial for viral dissemination to local lymph nodes and to the salivary glands. An m139-deficient MCMV also replicated to lower titers in SVEC4-10 endothelial cells. This replication defect was not accompanied by increased IFN-ß transcription, but was rescued by knockout of either DDX3 or UBR5. Moreover, m139 co-localized with DDX3 and UBR5 in viral replication compartments in the cell nucleus. These results suggest that m139 inhibits DDX3-mediated IFN production in macrophages and antagonizes DDX3 and UBR5-dependent functions related to RNA metabolism in endothelial cells.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Endoteliais/virologia , Infecções por Herpesviridae/microbiologia , Interferon beta/metabolismo , Macrófagos/virologia , Muromegalovirus/fisiologia , Replicação Viral , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Feminino , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Camundongos , Camundongos Endogâmicos BALB C
14.
Biochim Biophys Acta Gen Subj ; 1864(11): 129682, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663515

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Surgery is the only curative intent therapy, but the majority of patients experience disease relapse. Thus, patients who do not benefit from highly morbid surgical resection needs to be identified and offered palliative chemotherapy instead. In this pilot study, we aimed to identify differentially regulated proteins in plasma and plasma derived microparticles from PDAC patients with poor and good prognosis. METHODS: Plasma and plasma derived microparticle samples were obtained before surgical resection from PDAC patients. Sequential Windowed Acquisition of all Theoretical fragment ion spectra - Mass Spectrometry (SWATH-MS) proteomic analysis was performed to identify and quantify proteins in these samples. Statistical analysis was performed to identify biomarkers for poor prognosis. RESULTS: A total of 482 and 1024 proteins were identified from plasma and microparticle samples, respectively, by SWATH-MS analysis. Statistical analysis of the data further identified nine and six differentially (log2ratio > 1, p < .05) expressed proteins in plasma and microparticles, respectively. Protein tyrosine phosphatases, PTPRM and PTPRB, were decreased in plasma of patients with poor PDAC prognosis, while proteasomal subunit PSMD11 was increased in microparticles of patients with poor prognosis. CONCLUSION AND GENERAL SIGNIFICANCE: A novel blood-based biomarker signature for PDAC prognosis was identified.


Assuntos
Carcinoma Ductal Pancreático/sangue , Neoplasias Pancreáticas/sangue , Complexo de Endopeptidases do Proteassoma/sangue , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/sangue , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/sangue , Idoso , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/diagnóstico , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Projetos Piloto , Prognóstico , Proteômica , Estudos Retrospectivos
15.
Nat Chem ; 12(8): 732-739, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632184

RESUMO

Various pathogenic bacteria use post-translational modifications to manipulate the central components of host cell functions. Many of the enzymes released by these bacteria belong to the large Fic family, which modify targets with nucleotide monophosphates. The lack of a generic method for identifying the cellular targets of Fic family enzymes hinders investigation of their role and the effect of the post-translational modification. Here, we establish an approach that uses reactive co-substrate-linked enzymes for proteome profiling. We combine synthetic thiol-reactive nucleotide derivatives with recombinantly produced Fic enzymes containing strategically placed cysteines in their active sites to yield reactive binary probes for covalent substrate capture. The binary complexes capture their targets from cell lysates and permit subsequent identification. Furthermore, we determined the structures of low-affinity ternary enzyme-nucleotide-substrate complexes by applying a covalent-linking strategy. This approach thus allows target identification of the Fic enzymes from both bacteria and eukarya.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bartonella/metabolismo , Biocatálise , Cristalografia por Raios X , Células HeLa , Humanos , Proteínas de Membrana/química , Nucleotidiltransferases/química , Pasteurellaceae/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527287

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proteogenômica , Células Tumorais Cultivadas
17.
Mar Drugs ; 18(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403427

RESUMO

The phenomenon of high sugar consumption by tumor cells is known as Warburg effect. It results from a high glycolysis rate, used by tumors as preferred metabolic pathway even in aerobic conditions. Targeting the Warburg effect to specifically deliver sugar conjugated cytotoxic compounds into tumor cells is a promising approach to create new selective drugs. We designed, synthesized, and analyzed a library of novel 6-S-(1,4-naphthoquinone-2-yl)-d-glucose chimera molecules (SABs)-novel sugar conjugates of 1,4-naphthoquinone analogs of the sea urchin pigments spinochromes, which have previously shown anticancer properties. A sulfur linker (thioether bond) was used to prevent potential hydrolysis by human glycoside-unspecific enzymes. The synthesized compounds exhibited a Warburg effect mediated selectivity to human prostate cancer cells (including highly drug-resistant cell lines). Mitochondria were identified as a primary cellular target of SABs. The mechanism of action included mitochondria membrane permeabilization, followed by ROS upregulation and release of cytotoxic mitochondrial proteins (AIF and cytochrome C) to the cytoplasm, which led to the consequent caspase-9 and -3 activation, PARP cleavage, and apoptosis-like cell death. These results enable us to further clinically develop these compounds for effective Warburg effect targeting.


Assuntos
Antineoplásicos/farmacologia , Pigmentos Biológicos/química , Neoplasias da Próstata/tratamento farmacológico , Ouriços-do-Mar/química , Efeito Warburg em Oncologia/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/síntese química , Glucose/farmacologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Neoplasias da Próstata/patologia
18.
Front Oncol ; 10: 237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195182

RESUMO

Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an alternative to upfront surgery followed by adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not respond to NAC and may have been better managed by upfront surgery. Hence, there is an unmet need for accurate biomarkers for predicting NAC response in PDAC. We aimed to identify upregulated proteins in tumor tissue from poor- and good-NAC responders. Methods: Tumor and adjacent pancreas tissue samples were obtained following surgical resection from NAC-treated PDAC patients. SWATH-MS proteomic analysis was performed to identify and quantify proteins in tissue samples. Statistical analysis was performed to identify biomarkers for NAC response. Pathway analysis was performed to characterize affected canonical pathways in good- and poor-NAC responders. Results: A total of 3,156 proteins were identified, with 19 being were significantly upregulated in poor-responders compared to good-responders (log2 ratio > 2, p < 0.05). Those with the greatest ability to predict poor-NAC response were GRP78, CADM1, PGES2, and RUXF. Notably, canonical pathways that were significantly upregulated in good-responders included acute phase signaling and macrophage activation, indicating a heightened immune response in these patients. Conclusion: A novel biomarker signature for poor-NAC response in PDAC was identified.

19.
PLoS Genet ; 16(1): e1008531, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895944

RESUMO

Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica
20.
Cancers (Basel) ; 11(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671612

RESUMO

Treatment of castration-resistant prostate cancer (CRPC) remains challenging due to the development of drug resistance. The Warburg effect describes the ability of cancer cells to consume larger amounts of glucose compared to normal tissues. We identified derivatives of natural 1,4-naphthoquinones to be active in CRPC and further synthetically modified them via glucose conjugation to increase selectivity by Warburg effect targeting. Mechanisms of action were examined by quantitative proteomics followed by bioinformatical analysis and target validation. Four synthesized molecules revealed the highest selectivity towards human CRPC cells, which correlated with higher GLUT-1 activity and expression. The compounds were able to induce pro-apoptotic signs and to inhibit the pro-survival processes and mechanisms of drug resistance (i.e., AR-signaling and autophagy). Proteome analysis suggested a disruption of the mitochondria/oxidative phosphorylation, which was validated by further functional analysis: thus, mitochondria depolarization, elevated levels of cytotoxic ROS, an increase of Bax/Bcl-2 ratio as well as release of mitochondrial AIF and cytochrome C to cytoplasm were observed. In conclusion, glucose-conjugated 1,4-naphthoquinones show potent activity and selectivity in human CRPC exerted via mitochondrial targeting. The compounds can overcome drug resistance against current standard therapies and suppress pro-survival mechanisms. This unique combination of properties makes them new promising candidates for the treatment of CRPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA