Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 96: 105790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355023

RESUMO

Here we evaluated the gill epithelial cell line ASG-10 from Atlantic salmon, as an in vitro model for research on known water quality challenges in aquaculture. Ammonia/ammonium (NH3/NH4+), a recognized challenge in water-intensive recirculating aquaculture systems (RAS), induced lysosomal vacuolization, reduced protein degradation and cell migration of the ASG-10 cells. Aluminium (Aln+), another challenge in freshwater aquaculture facilities had only minor effects. Next, we investigated the tolerance for direct water exposure of ASG-10. The cells tolerated water with osmolarity between 169 and 419 mOsmol/kg for 24 h. However, cells exposed for 3 h to water at 863 mOsmol/kg changed cellular morphology and induced gene expression related to stress (gpx1, casp3, hsp70), and after 24 h exposure cellular viability was severely reduced. Nevertheless, when the cells were grown in transwell inserts, they tolerated 863 mOsmol/kg for 3 h and induction of stress response associated genes was considerably reduced. Lastly, the ASG-10 cells were exposed to water samples, with no known quality issues, from different aquaculture facilities. The cells showed no differences in viability or morphology compared to their representative control. In conclusion, the ASG-10 cell line is a promising in vitro model to study water quality challenges and whole water samples.


Assuntos
Salmo salar , Animais , Brânquias , Qualidade da Água , Células Epiteliais , Aquicultura
2.
Front Genet ; 10: 794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611904

RESUMO

Screening has revealed that modern-day feeds used in Atlantic salmon aquaculture might contain trace amounts of agricultural pesticides. To reach slaughter size, salmon are produced in open net pens in the sea. Uneaten feed pellets and undigested feces deposited beneath the net pens represent a source of contamination for marine organisms. To examine the impacts of long-term and continuous dietary exposure to an organophosphorus pesticide found in Atlantic salmon feed, we fed juvenile Atlantic cod (Gadus morhua), an abundant species around North Atlantic fish farms, three concentrations (0.5, 4.2, and 23.2 mg/kg) of chlorpyrifos-methyl (CPM) for 30 days. Endpoints included liver and bile bioaccumulation, liver transcriptomics and metabolomics, as well as plasma cholinesterase activity, cortisol, liver 7-ethoxyresor-ufin-O-deethylase activity, and hypoxia tolerance. The results show that Atlantic cod can accumulate relatively high levels of CPM in liver after continuous exposure, which is then metabolized and excreted via the bile. All three exposure concentrations lead to significant inhibition of plasma cholinesterase activity, the primary target of CPM. Transcriptomics profiling pointed to effects on cholesterol and steroid biosynthesis. Metabolite profiling revealed that CPM induced responses reflecting detoxification by glutathione-S-transferase, inhibition of monoacylglycerol lipase, potential inhibition of carboxylesterase, and increased demand for ATP, followed by secondary inflammatory responses. A gradual hypoxia challenge test showed that all groups of exposed fish were less tolerant to low oxygen saturation than the controls. In conclusion, this study suggests that wild fish continuously feeding on leftover pellets near fish farms over time may be vulnerable to organophosphorus pesticides.

3.
Environ Sci Technol ; 39(4): 1167-74, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15773491

RESUMO

Increased levels of aluminum ions released from nutrient-poor soils affected by acid rain have been the primary cause of fish deaths in the acidified watersheds of southern Norway. The complex aluminum chemistry in water requires speciation methods to measure the gill-reactive species imposing toxic effects toward fish. Previously, aluminum speciation has mainly followed the fractionation principles outlined by Barnes/Driscoll, and several analogues of these fractionation principles have been used both in situ and in the laboratory. Due to rapid transformation processes, aluminum speciation in water samples may change even during short storage times. Thus, results obtained by laboratory fractionation methods might be misleading for the assessment of potentially toxic aluminum species in the water. Until now, all in situ field fractionation methods have been time and labor consuming. The DGT technique (diffusive gradients in thin films) is a new in situ sampler collecting a fraction of dissolved metal weighted according to the rate of diffusion and dissociation kinetics. In a field experiment with acid surface water we studied the DGT sampler as a new prediction tool for the gill accumulation of aluminum in trout (Salmo trutta L.) and the induced physiological stress responses measured as changes in blood glucose and plasma chloride. Aluminum determined with DGT (DGT-AI) was higher than labile monomeric aluminum (Ali) determined with a laboratory aluminum fractionation procedure (PCV--a pyrocatechol violet analogue of Barnes/Driscoll), a difference due to collection of a fraction of organically complexed aluminum by DGT and a reduction of the Ali fraction during sample storage. DGT-AI predicted the gill uptake and the aluminum-induced physiological stress responses (increased blood glucose and decreased plasma chloride, r2 from 0.6 to 0.9). The results indicate that DGT-AI is a better predictor for the stress response than laboratory-determined Ali, because the DGT sampler collects a more correct fraction of the gill-reactive aluminum species that induces the stress.


Assuntos
Alumínio/toxicidade , Água Doce/química , Estresse Fisiológico/induzido quimicamente , Poluentes da Água/toxicidade , Alumínio/química , Alumínio/metabolismo , Animais , Glicemia/análise , Cloretos/sangue , Cloretos/metabolismo , Difusão , Previsões , Noruega , Medição de Risco , Truta , Poluentes da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA