Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Adv Sci (Weinh) ; 10(26): e2302611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400371

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Engenharia Tecidual , Peixe-Zebra , Alvo Mecanístico do Complexo 1 de Rapamicina
2.
Crit Care ; 25(1): 436, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920728

RESUMO

BACKGROUND: The measurement of circulating substrate concentrations does not provide information about substrate kinetics. It, therefore, remains unclear if a decrease in plasma concentration of albumin, as seen during critical illness, is a consequence of suppressed production in the liver or increased peripheral clearance. In this study, using stable isotope tracer infusions, we measured albumin and fibrinogen kinetics in septic patients and in a control group of non-septic subjects. METHODS: With the approval from the institutional Research Ethics Board and after obtaining written informed consent from patients or their substitute decision maker, mechanically ventilated patients with sepsis and patients scheduled for elective coronary artery bypass grafting were enrolled. Patients in the non-sepsis group were studied on the day before surgery. The stable isotope L-[ring-2H5]phenylalanine was used to measure absolute synthesis rates (ASR) of albumin and fibrinogen. A priming dose of L-[ring-2H5]phenylalanine (4 µmol/kg) was given followed by a six-hour infusion at a rate of 0.15 µmol/kg/min. At baseline and hourly thereafter, blood was drawn to measure isotope enrichments by gas chromatography/mass spectrometry. Very low density lipoprotein apolipoprotein-B 100 isotopic enrichment was used to represent the isotopic enrichment of the phenylalanine precursor pool from which the liver synthesizes proteins. Plasma albumin and fibrinogen concentrations were also measured. RESULTS: Mean plasma albumin in septic patients was decreased when compared to non-septic patients, while synthesis rates were comparable. Mean plasma fibrinogen and ASR in septic patients was increased when compared to non-septic patients. In non-septic patients, no statistically significant correlation between plasma albumin and ASR was observed but plasma fibrinogen significantly correlated with ASR. In septic patients, plasma albumin and fibrinogen significantly correlated with ASR. CONCLUSIONS: While septic patients showed lower plasma albumin levels than non-septic patients, albumin synthesis was similar in the two groups suggesting that hypoalbuminemia during sepsis was not caused by suppressed hepatic production but a result of enhanced clearance from the circulation. Hyperfibrinogenemia in septic patients was a consequence of increased fibrinogen production. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02865408 (registered on August 12, 2016) and ClinicalTrials.gov: NCT02549443 (registered on September 15, 2015).


Assuntos
Hipoalbuminemia , Sepse , Fibrinogênio , Humanos , Cinética , Albumina Sérica
4.
Crit Care ; 24(1): 499, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787899

RESUMO

The goal of nutrition support is to provide the substrates required to match the bioenergetic needs of the patient and promote the net synthesis of macromolecules required for the preservation of lean mass, organ function, and immunity. Contemporary observational studies have exposed the pervasive undernutrition of critically ill patients and its association with adverse clinical outcomes. The intuitive hypothesis is that optimization of nutrition delivery should improve ICU clinical outcomes. It is therefore surprising that multiple large randomized controlled trials have failed to demonstrate the clinical benefit of restoring or maximizing nutrient intake. This may be in part due to the absence of biological markers that identify patients who are most likely to benefit from nutrition interventions and that monitor the effects of nutrition support. Here, we discuss the need for practical risk stratification tools in critical care nutrition, a proposed rationale for targeted biomarker development, and potential approaches that can be adopted for biomarker identification and validation in the field.


Assuntos
Biomarcadores/análise , Terapia Nutricional/normas , Albuminas/análise , Biomarcadores/sangue , Composição Corporal/fisiologia , Índice de Massa Corporal , Proteína C-Reativa/análise , Cuidados Críticos/métodos , Cuidados Críticos/estatística & dados numéricos , Nutrição Enteral/efeitos adversos , Nutrição Enteral/métodos , Nutrição Enteral/normas , Humanos , Resistência à Insulina/fisiologia , Interleucina-6/análise , Interleucina-6/sangue , Nitrogênio/análise , Nitrogênio/sangue , Terapia Nutricional/efeitos adversos , Terapia Nutricional/métodos , Apoio Nutricional/efeitos adversos , Apoio Nutricional/métodos , Apoio Nutricional/normas , Nutrição Parenteral/efeitos adversos , Nutrição Parenteral/métodos , Nutrição Parenteral/normas , Proteínas/análise
6.
Cell Death Dis ; 9(3): 254, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449538

RESUMO

Oxidative stress determines cell fate through several mechanisms, among which regulation of mRNA translation by the phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2α at serine 51 (eIF2αP) plays a prominent role. Increased eIF2αP can contribute to tumor progression as well as tumor suppression. While eIF2αP is increased in most cells to promote survival and adaptation to different forms of stress, we demonstrate that eIF2αP is reduced in tuberous sclerosis complex 2 (TSC2)-deficient cells subjected to oxidative insults. Decreased eIF2αP in TSC2-deficient cells depends on reactive oxygen species (ROS) production and is associated with a reduced activity of the endoplasmic reticulum (ER)-resident kinase PERK owing to the hyper-activation of the mammalian target of rapamycin complex 1 (mTORC1). Downregulation of PERK activity and eIF2αP is accompanied by increased ROS production and enhanced susceptibility of TSC2-deficient cells to extrinsic pro-oxidant stress. The decreased levels of eIF2αP delay tumor formation of TSC2-deficient cells in immune deficient mice, an effect that is significantly alleviated in mice subjected to an anti-oxidant diet. Our findings reveal a previously unidentified connection between mTORC1 and eIF2αP in TSC2-deficient cells with potential implications in tumor suppression in response to oxidative insults.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Esclerose Tuberosa/enzimologia , eIF-2 Quinase/metabolismo , Animais , Antioxidantes/farmacologia , Morte Celular , Células Cultivadas , Regulação para Baixo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Camundongos , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Serina , Transdução de Sinais , Fatores de Tempo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/genética , Carga Tumoral
7.
Cancer Res ; 77(20): 5491-5502, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830860

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive destructive neoplasm of the lung associated with inactivating mutations in the TSC1 or TSC2 tumor suppressor genes. Cell or animal models that accurately reflect the pathology of LAM have been challenging to develop. Here, we generated a robust human cell model of LAM by reprogramming TSC2 mutation-bearing fibroblasts from a patient with both tuberous sclerosis complex (TSC) and LAM (TSC-LAM) into induced pluripotent stem cells (iPSC), followed by selection of cells that resemble those found in LAM tumors by unbiased in vivo differentiation. We established expandable cell lines under smooth muscle cell (SMC) growth conditions that retained a patient-specific genomic TSC2+/- mutation and recapitulated the molecular and functional characteristics of pulmonary LAM cells. These include multiple indicators of hyperactive mTORC1 signaling, presence of specific neural crest and SMC markers, expression of VEGF-D and female sex hormone receptors, reduced autophagy, and metabolic reprogramming. Intriguingly, the LAM-like features of these cells suggest that haploinsufficiency at the TSC2 locus contributes to LAM pathology, and demonstrated that iPSC reprogramming and SMC lineage differentiation of somatic patient cells with germline mutations was a viable approach to generate LAM-like cells. The patient-derived SMC lines we have developed thus represent a novel cellular model of LAM that can advance our understanding of disease pathogenesis and develop therapeutic strategies against LAM. Cancer Res; 77(20); 5491-502. ©2017 AACR.


Assuntos
Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Miócitos de Músculo Liso/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
8.
J Biol Chem ; 292(5): 1899-1909, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011640

RESUMO

Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/biossíntese , Autofagia/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Fator de Transcrição STAT1/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição STAT1/genética , Sirolimo/farmacologia
9.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1085-R1092, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707724

RESUMO

Cardiac surgery triggers an inflammatory stress response, leading to protein catabolism, a process that even high-dose insulin therapy alone cannot reverse. To determine whether hyperinsulinemic-normoglycemic clamp and perioperative amino acid (AA) supplementation improves whole body protein balance, 20 patients scheduled for elective coronary artery bypass grafting surgery were randomly assigned to have intra- and postoperative hyperinsulinemic-normoglycemic clamp, with or without intravenous AA supplementation. Primed continuous infusions of [6,6-2H2]glucose and l-[1-13C]leucine were used to quantify whole body protein and glucose metabolism before and after surgery. Adipose tissue and serum cytokines were also analyzed to measure their responsiveness to the anabolic effect of AA administration. During hyperinsulinemic-normoglycemic clamp, AA supplementation successfully stimulated whole body protein synthesis, resulting in a positive whole body protein balance after surgery (insulin: -13.6 ± 4.5 vs. insulin + AA: 2.1 ± 5.4 µmol·kg-1·h-1, P < 0.001). Endogenous glucose production was equally suppressed in both groups (insulin: 0.0 ± 3.8 vs. insulin + AA 1.6 ± 1.6 µmol·kg-1·min-1, P = 0.230). AA supplementation led to significant changes in serum and tissue IL-6 (insulin: 246.6 ± 111.2 vs. insulin + AA: 124.5 ± 79.3 pg/ml, P = 0.011). In conclusion, hyperinsulinemic-normoglycemic clamp technique, together with AA supplementation, can induce an anabolic state after open-heart surgery, as quantified by a positive whole body protein balance.


Assuntos
Aminoácidos/administração & dosagem , Ponte de Artéria Coronária/efeitos adversos , Inflamação/etiologia , Inflamação/metabolismo , Insulina/administração & dosagem , Biossíntese de Proteínas/efeitos dos fármacos , Idoso , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quimioterapia Combinada/métodos , Feminino , Humanos , Inflamação/prevenção & controle , Masculino , Metabolismo/efeitos dos fármacos , Metabolismo/fisiologia , Cuidados Pós-Operatórios/métodos , Resultado do Tratamento
10.
Oncotarget ; 7(38): 61152-61165, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27458154

RESUMO

Lymphangioleiomyomatosis (LAM) is a destructive lung disease that can arise sporadically or in adults suffering from the tumor syndrome tuberous sclerosis complex (TSC). Microscopic tumors ('LAM nodules') in the lung interstitium arise from lymphatic invasion and metastasis. These consist of smooth muscle-like cells (LAM cells) that exhibit markers of neural crest differentiation and loss of the tumor suppressor protein 'tuberous sclerosis complex-2' (TSC2). Consistent with a neural phenotype, expression of the neuropeptide urotensin-II and its receptor was detected in LAM nodules. We hypothesized that loss of TSC2 sensitizes cells to the oncogenic effects of urotensin-II. TSC2-deficient Eker rat uterine leiomyoma ELT3 cells were stably transfected with empty vector or plasmid for the expression of TSC2. Urotensin-II increased cell viability and proliferation in TSC2-deficient cells, but not in TSC2-reconstituted cells. When exposed to urotensin-II, TSC2-deficient cells exhibited greater migration, anchorage-independent cell growth, and matrix invasion. The effects of urotensin-II on TSC2-deficient cells were blocked by the urotensin receptor antagonist SB657510, and accompanied by activation of Erk mitogen-activated protein kinase and focal adhesion kinase. Urotensin-II-induced proliferation and migration were reproduced in TSC2-deficient human angiomyolipoma cells, but not in those stably expressing TSC2. In a mouse xenograft model, SB657510 blocked the growth of established ELT3 tumors, reduced the number of circulating tumor cells, and attenuated the production of VEGF-D, a clinical biomarker of LAM. Urotensin receptor antagonists may be selective therapeutic agents for the treatment of LAM or other neural crest-derived neoplasms featuring loss of TSC2 or increased expression of the urotensin receptor.


Assuntos
Proteínas Supressoras de Tumor/genética , Urotensinas/farmacologia , Neoplasias Uterinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiotaxia , Feminino , Mutação em Linhagem Germinativa , Humanos , Pneumopatias/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Neoplasias Uterinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Res ; 13(10): 1377-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26130148

RESUMO

UNLABELLED: The mTOR nucleates two complexes, namely mTOR complex 1 and 2 (mTORC1 and mTORC2), which are implicated in cell growth, survival, metabolism, and cancer. Phosphorylation of the α-subunit of translation initiation factor eIF2 at serine 51 (eIF2αS51P) is a key event of mRNA translation initiation and a master regulator of cell fate during cellular stress. Recent studies have implicated mTOR signaling in the stress response, but its connection to eIF2αS51P has remained unclear. Herein, we report that genetic as well as catalytic inhibition of mTORC2 induces eIF2αS51P. On the other hand, the allosteric inhibitor rapamycin induces eIF2αS51P through pathways that are independent of mTORC1 inactivation. Increased eIF2αS51P by impaired mTORC2 depends on the inactivation of AKT, which primes the activation of the endoplasmic reticulum (ER)-resident kinase PERK/PEK. The biologic function of eIF2αS51P was characterized in tuberous sclerosis complex (TSC)-mutant cells, which are defective in mTORC2 and AKT activity. TSC-mutant cells exhibit increased PERK activity, which is downregulated by the reconstitution of the cells with an activated form of AKT1. Also, TSC-mutant cells are increasingly susceptible to ER stress, which is reversed by AKT1 reconstitution. The susceptibility of TSC-mutant cells to ER stress is further enhanced by the pharmacologic inhibition of PERK or genetic inactivation of eIF2αS51P. Thus, the PERK/eIF2αS51P arm is an important compensatory prosurvival mechanism, which substitutes for the loss of AKT under ER stress. IMPLICATIONS: A novel mechanistic link between mTOR function and protein synthesis is identified in TSC-null tumor cells under stress and reveals potential for the development of antitumor treatments with stress-inducing chemotherapeutics.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção , Regulação para Cima , eIF-2 Quinase/metabolismo
12.
Biochim Biophys Acta ; 1853(10 Pt A): 2539-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094769

RESUMO

Expression and activity of the Ste20-like kinase, SLK, are increased during kidney development and recovery from ischemia-reperfusion injury. SLK mediates apoptosis in various cells, and can regulate cell cycle progression and cytoskeletal remodeling. In cells, SLK is detected in a high molecular mass complex, suggesting that SLK is a dimer/oligomer, or is in tight association with other proteins. To better understand the regulation, localization and function of SLK, we sought to identify proteins in this high molecular mass complex. Analysis by mass spectroscopy identified the nucleoporin, translocated promoter region (Tpr), and the cytoskeletal protein, α-actinin-4, as potential SLK-interacting proteins. Using a protein complementation assay, we showed that the 350 amino acid C-terminal, coiled-coil domain of SLK was responsible for homodimerization, as well as interaction with Tpr and α-actinin-4. The association of SLK with Tpr and α-actinin-4, respectively, was confirmed by co-immunoprecipitation. Subsets of total cellular SLK colocalized with Tpr at the nuclear envelope, and α-actinin-4 in the cytoplasm. Expression of Tpr attenuated activation-specific autophosphorylation of SLK, and blocked SLK-induced apoptosis and AP-1 activity. In contrast to the effect of Tpr, autophosphorylation of SLK was not affected by α-actinin-4. Thus, SLK interacts with Tpr and α-actinin-4 in cells, and these protein-protein interactions may control the subcellular localization and the biological activity of SLK.


Assuntos
Actinina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinina/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas/genética
13.
Chest ; 148(2): 444-449, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25789699

RESUMO

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a manifestation of tuberous sclerosis complex (TSC) that causes destruction of the lung and chronic respiratory failure. Population-based estimates of demographics, clinical outcomes, and health-care utilization are lacking for TSC and LAM. METHODS: Data on demographics, clinical outcomes, and health-care utilization in the Quebec ministerial provincial health-care database were analyzed for their association with TSC and LAM. RESULTS: A total of 1,004 subjects with TSC were identified using International Classification of Diseases, Ninth and 10th Revisions, codes for a prevalence of one in 7,872 people. There were 38 subjects with LAM, nine of whom also had TSC. Mean ages as well as the mean age at death were lower in the LAM and TSC group than in the control group. Mortality rates were higher in subjects with LAM than in those with TSC or in control subjects. Subjects with LAM experienced more medical visits and hospitalizations than did those with TSC and control subjects; these were associated with higher health-care costs. Frequently prescribed drugs in TSC or LAM included anticonvulsants, antidepressants, and sedatives; the use of mammalian target of rapamycin inhibitors was uncommon. CONCLUSIONS: The prevalence of TSC in Quebec, Canada, is similar to estimates from previously published surveys. LAM is likely underreported, perhaps due to suboptimal case identification or referral. Health-care utilization and mortality for LAM are high, suggesting that timely diagnosis and therapy could be beneficial. Mental health disorders may be an unrecognized clinical feature of LAM. These results provide a population-based background for policymakers and researchers to better address the needs of patients with TSC and LAM.


Assuntos
Serviços de Saúde/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Neoplasias Pulmonares/epidemiologia , Linfangioleiomiomatose/epidemiologia , Esclerose Tuberosa/epidemiologia , Adolescente , Adulto , Idoso , Agendamento de Consultas , Estudos de Coortes , Feminino , Serviços de Saúde/economia , Hospitalização/economia , Humanos , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , Linfangioleiomiomatose/etiologia , Linfangioleiomiomatose/mortalidade , Masculino , Pessoa de Meia-Idade , Prevalência , Quebeque/epidemiologia , Estudos Retrospectivos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/mortalidade , Adulto Jovem
14.
Antioxid Redox Signal ; 20(3): 443-59, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24180497

RESUMO

OBJECTIVE: To evaluate the effects of physiological levels of mitochondrial-derived reactive oxygen species (ROS) on skeletal muscle autophagy, a proteolytic pathway designed to regulate contractile and myofilament homeostasis and to recycle long-lived proteins and damaged organelles. RESULTS: Basal levels of autophagy and autophagy triggered by 1.5 to 4 h of acute nutrient deprivation, rapamycin treatment, or leucine deprivation were measured in differentiated C2C12 myotubes using long-lived protein degradation assays, LC3B lipidation, autophagy-related gene expression, and electron microscopy. Preincubation with the general antioxidants tempol (superoxide dismutase mimic) and N-acetyl cysteine (NAC) or the mitochondria-specific antioxidants mito-tempol and SS31 significantly decreased the rates of long-lived protein degradation and LC3B flux and blocked the induction of autophagy-related gene expression. Mitochondrial ROS levels significantly increased in response to acute nutrient deprivation and rapamycin treatment. Mito-tempol and tempol blocked this response. Antioxidants decreased AMP-activated protein kinase (AMPK) phosphorylation by 40% and significantly increased protein kinase B (AKT) phosphorylation, but exerted no effects on mTORC1-dependent ULK1 phosphorylation on Ser(555). NAC significantly decreased basal LC3B autophagic flux in skeletal muscles of mice. INNOVATION: We report for the first time that endogenous ROS promote skeletal muscle autophagy at the basal level and in response to acute nutrient starvation and mTORC1 inhibition. We also report for the first time that mitochondrial-derived ROS promote skeletal muscle autophagy and that this effect is mediated, in part, through regulation of autophagosome initiation and AKT inhibition. CONCLUSION: Mitochondrial-derived ROS promote skeletal muscle autophagy and this effect is mediated, in part, through activation of AMPK and inhibition of AKT.


Assuntos
Autofagia/genética , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Óxidos N-Cíclicos/farmacologia , Alimentos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais , Sirolimo/farmacologia , Marcadores de Spin
15.
J Infect Dis ; 208(10): 1717-28, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23908482

RESUMO

BACKGROUND: The antifungal posaconazole concentrates within host cells and protects against Aspergillus fumigatus. The specific subcellular location of posaconazole and the mechanism by which cell-associated posaconazole inhibits fungal growth remain uncharacterized. METHODS: Posaconazole was conjugated with the fluorophore boron-dipyrromethene (BDP-PCZ). A549 pulmonary epithelial cells and A. fumigatus were exposed to BDP-PCZ individually and in coculture. BDP-PCZ subcellular localization and trafficking were observed using confocal microscopy and flow cytometry. RESULTS: BDP-PCZ concentrated within A549 cell membranes, and in particular within the endoplasmic reticulum. Epithelial cell-associated BDP-PCZ rapidly transferred to and concentrated within A. fumigatus cell membranes on contact. BDP-PCZ transfer to conidia did not require phagocytosis and was markedly enhanced by the conidial hydrophobin RodA. Within AF, BDP-PCZ also concentrated in membranes including the endoplasmic reticulum and colocalized with the azole target enzyme CYP51a. Concentration of BDP-PCZ within host and fungal cell membranes persisted for >48 hours and could be competitively inhibited by posaconazole but not voriconazole. CONCLUSIONS: Posaconazole concentrates within host cell membranes and rapidly transfers to A. fumigatus, where it accumulates to high concentrations and persists at the site of its target enzyme. These intracellular and intercellular pharmacokinetic properties probably contribute to the efficacy of PCZ.


Assuntos
Antifúngicos/metabolismo , Células Epiteliais/metabolismo , Fungos/metabolismo , Triazóis/metabolismo , Antibioticoprofilaxia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Epiteliais/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico , Micoses/prevenção & controle , Ligação Proteica , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo , Triazóis/farmacologia , Triazóis/uso terapêutico
16.
Am J Physiol Renal Physiol ; 301(3): F554-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677149

RESUMO

The expression and activation of the Ste20-like kinase, SLK, is increased during renal development and recovery from ischemic acute renal failure. SLK promotes apoptosis, and during renal injury and repair, transcriptional induction or posttranscriptional control of SLK may, therefore, regulate cell survival. SLK contains protein interaction (coiled-coil) domains, suggesting that posttranslational homodimerization may also modulate SLK activity. We therefore expressed coiled-coil regions in the C-terminal domain of SLK as fusion proteins and demonstrated their homodimerization. By gel-filtration chromatography, endogenous and heterologously expressed SLK were detected in a macromolecular protein complex. To test the role of homodimerization in kinase activation, we constructed a fusion protein consisting of the SLK catalytic domain (amino acids 1-373) and a modified FK506 binding protein, Fv (Fv-SLK 1-373). Addition of AP20187 (an analog of FK506) enhanced the homodimerization of Fv-SLK 1-373. In an in vitro kinase assay, the dimeric Fv-SLK 1-373 displayed greater kinase activity than the monomeric form. In cells expressing Fv-SLK 1-373, homodimerization increased activation-specific phosphorylation of the proapoptotic kinases, c-Jun N-terminal kinase and p38 kinase. Compared with the monomer, dimeric Fv-SLK 1-373 enhanced the activation of a Bax promoter-luciferase reporter. Finally, expression of Fv-SLK 1-373 induced apoptosis, and the effect was increased by homodimerization. Thus the activity, downstream signaling, and functional effects of SLK are enhanced by dimerization of the kinase domain.


Assuntos
Rim/metabolismo , Multimerização Proteica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/fisiologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Rim/citologia , Modelos Animais , Ratos , Transdução de Sinais/fisiologia
17.
Peptides ; 31(8): 1511-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20433884

RESUMO

Urotensin II (UII) and urotensin-related peptide (URP) are vasoactive neuropeptides with wide ranges of action in the normal mammalian lung, including the control of smooth muscle cell proliferation. UII and URP exert their actions by binding to the G-protein coupled receptor-14 known as UT. Lymphangioleiomyomatosis (LAM) is a disease of progressive lung destruction resulting from the excessive growth of abnormal smooth muscle-like cells that exhibit markers of neural crest origin. LAM cells also exhibit inactivation of the tumor suppressor tuberin (TSC2), excessive activity of 'mammalian target of rapamycin (mTOR), and dysregulated cell growth and proliferation. In the present study we examined the expression and distribution of UII and UT in the lungs of patients with LAM. There was abundant expression of UII, URP and UT proteins in the interstitial nodular lesions of patients with LAM. By immunohistochemistry, UII, URP and UT were co-localized with HMB45, a diagnostic marker of LAM. Immunoreactivity for UII, URP and UT was also evident over the pulmonary epithelium, pulmonary vasculature and inflammatory cells. Western blotting revealed the presence of greater UT expression in the lungs of patients with LAM compared to normal human lungs. UT expression correlated with mTOR activity, as indicated by increased phosphorylation of S6 in LAM samples. These findings demonstrate for the first time the presence of UII, URP and their receptor in the lesions of patients with LAM, and suggest a possible role in the pathogenesis of the disease.


Assuntos
Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Hormônios Peptídicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima , Urotensinas/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Western Blotting , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/irrigação sanguínea , Pulmão/patologia , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/patologia , Antígenos Específicos de Melanoma/metabolismo , Pessoa de Meia-Idade , Fosforilação , Sistema de Registros , Mucosa Respiratória/metabolismo , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
Lymphat Res Biol ; 8(1): 33-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20235885

RESUMO

The protein mammalian target of rapamycin (mTOR) plays a central role in cell growth and proliferation. Excessive mTOR activity is a prominent feature of many neoplasms and hamartoma syndromes, including lymphangioleiomyomatosis (LAM), a destructive lung disease that causes progressive respiratory failure in women. Although pharmacological inhibitors of mTOR should directly target the pathogenesis of these disorders, their clinical efficacy has been suboptimal. Recent scientific findings reviewed here have greatly improved our understanding of mTOR signaling mechanisms, provided new insights into the control of cell growth and proliferation, and facilitated the development of new therapeutic approaches in LAM, as well as other neoplastic disorders that exhibit excessive mTOR activity.


Assuntos
Antineoplásicos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangioleiomiomatose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/patologia , Serina-Treonina Quinases TOR
19.
J Biol Chem ; 284(36): 24341-53, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19553685

RESUMO

Target of rapamycin (TOR) is a highly conserved serine/threonine kinase that controls cell growth, primarily via regulation of protein synthesis. In Saccharomyces cerevisiae, TOR can also suppress the transcription of stress response genes by a mechanism involving Tap42, a serine/threonine phosphatase subunit, and the transcription factor Msn2. A physical association between mammalian TOR (mTOR) and the transcription factor signal transducer and activator of transcription-1 (STAT1) was recently identified in human cells, suggesting a similar role for mTOR in the transcription of interferon-gamma-stimulated genes. In the current study, we identified a macromolecular protein complex composed of mTOR, STAT1, the Tap42 homologue alpha4, and the protein phosphatase 2A catalytic subunit (PP2Ac). Inactivation of mTOR enhanced its association with STAT1 and increased STAT1 nuclear content in PP2Ac-dependent fashion. Depletion of alpha4, PP2A, or mTOR enhanced the induction of early (i.e. IRF-1) and late (i.e. caspase-1, hiNOS, and Fas) STAT1-dependent genes. The regulation of IRF-1 or caspase-1 by mTOR was independent of other known mTOR effectors p70 S6 kinase and Akt. These results describe a new role for mTOR and alpha4/PP2A in the control of STAT1 nuclear content, and the expression of interferon-gamma-sensitive genes involved in immunity and apoptosis.


Assuntos
Núcleo Celular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Chaperonas Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/imunologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR
20.
Blood ; 111(8): 4145-54, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18252863

RESUMO

Angiopoietin-1 (Ang-1), ligand for the endothelial cell-specific Tie-2 receptors, promotes migration and proliferation of endothelial cells, however, whether these effects are promoted through the release of a secondary mediator remains unclear. In this study, we assessed whether Ang-1 promotes endothelial cell migration and proliferation through the release of interleukin-8 (IL-8). Ang-1 elicited in human umbilical vein endothelial cells (HUVECs) a dose- and time-dependent increase in IL-8 production as a result of induction of mRNA and enhanced mRNA stability of IL-8 transcripts. IL-8 production is also elevated in HUVECs transduced with retroviruses expressing Ang-1. Neutralization of IL-8 in these cells with a specific antibody significantly attenuated proliferation and migration and induced caspase-3 activation. Exposure to Ang-1 triggered a significant increase in DNA binding of activator protein-1 (AP-1) to a relatively short fragment of IL-8 promoter. Upstream from the AP-1 complex, up-regulation of IL-8 transcription by Ang-1 was mediated through the Erk1/2, SAPK/JNK, and PI-3 kinase pathways, which triggered c-Jun phosphorylation on Ser63 and Ser73. These results suggest that promotion of endothelial migration and proliferation by Ang-1 is mediated, in part, through the production of IL-8, which acts in an autocrine fashion to suppress apoptosis and facilitate cell proliferation and migration.


Assuntos
Angiopoietina-1/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Interleucina-8/biossíntese , Fator de Transcrição AP-1/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae , Transdução Genética , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA