Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 12(5): e1388, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877660

RESUMO

Periodontitis is an inflammatory condition caused by bacteria and represents a serious health problem worldwide as the inflammation damages the supporting tissues of the teeth and may predispose to systemic diseases. Porphyromonas gingivalis is considered a keystone periodontal pathogen that releases bacterial extracellular vesicles (bEVs) containing virulence factors, such as gingipains, that may contribute to the pathogenesis of periodontitis. This study aimed to isolate and characterize bEVs from three strains of P. gingivalis, investigate putative bEV uptake into human oral fibroblasts, and determine the gingipain activity of the bEVs. bEVs from three bacterial strains, ATCC 33277, A7A1-28, and W83, were isolated through ultrafiltration and size-exclusion chromatography. Vesicle size distribution was measured by nano-tracking analysis (NTA). Transmission electron microscopy was used for bEV visualization. Flow cytometry was used to detect bEVs and gingipain activity was measured with an enzyme assay using a substrate specific for arg-gingipain. The uptake of bEVs into oral fibroblasts was visualized using confocal microscopy. NTA showed bEV concentrations from 108 to 1011 particles/mL and bEV diameters from 42 to 356 nm. TEM pictures demonstrated vesicle-like structures. bEV-gingipains were detected both by flow cytometry and enzyme assay. Fibroblasts incubated with bEVs labeled with fluorescent dye displayed intracellular localization consistent with bEV internalization. In conclusion, bEVs from P. gingivalis were successfully isolated and characterized, and their uptake into human oral fibroblasts was documented. The bEVs displayed active gingipains demonstrating their origin from P. gingivalis and the potential role of bEVs in periodontitis.


Assuntos
Vesículas Extracelulares , Periodontite , Humanos , Cisteína Endopeptidases Gingipaínas , Cisteína Endopeptidases , Porphyromonas gingivalis , Adesinas Bacterianas , Periodontite/microbiologia , Fibroblastos/microbiologia
2.
J Biol Chem ; 293(34): 13033-13043, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29925588

RESUMO

The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from arctic waters were collected, cultivated, and analyzed for their CO2-fixing capability. We characterized the kinetic properties of five and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and Km for the oxygenase and carboxylase activities at 25 °C and the specificity factors (Sc/o) at 15, 25, and 35 °C were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2 Structurally, diatom Rubiscos belong to form I C/D, containing small subunits characterized by a short ßA-ßB loop and a C-terminal extension that forms a ß-hairpin structure (ßE-ßF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxyproline, ß-hydroxyleucine, hydroxylated and nitrosylated cysteine, mono- and dihydroxylated lysine, and trimethylated lysine. Our studies suggest adaptation toward achieving efficient CO2 fixation in arctic diatom Rubiscos.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/enzimologia , Processamento de Proteína Pós-Traducional , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Cristalografia por Raios X , Hidroxilação , Cinética , Nitrosação , Filogenia , Conformação Proteica , Dobramento de Proteína , Ribulose-Bifosfato Carboxilase/genética , Relação Estrutura-Atividade
3.
Artigo em Inglês | MEDLINE | ID: mdl-28159588

RESUMO

OBJECTIVE: The aim was to study the association between microflora and medication-related osteonecrosis of the jaw (MRONJ) by using culture-independent molecular techniques to detect bacteria in necrotic bone lesions. STUDY DESIGN: Included were 18 consecutive patients with MRONJ, 10 with osteoporosis and 8 cancer patients. Bone biopsies were retrieved from the center of the necrotic bone and from visually healthy bone, and 16 S rRNA gene fragments from bacterial DNA were amplified with polymerase chain reaction. RESULTS: The study revealed a diversity of bacteria represented by 16 S rRNA sequences in all the necrotic bone samples and in 60% of the visually healthy bone. Eight dominating taxa groups were identified at the genus level: Porphyromonas, Lactobacillus, Tannerella, Prevotella, Actinomyces, Treponema, Streptococcus, and Fusobacterium. CONCLUSIONS: The necrotic bone lesions contained mainly anaerobic bacteria, representative of periodontal microflora, suggesting that a periodontal infection in combination with antiresorptive treatment could initiate osteonecrosis.


Assuntos
Bactérias/isolamento & purificação , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , Biópsia , Feminino , Humanos , Masculino , Necrose/microbiologia
4.
APMIS ; 118(3): 230-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132189

RESUMO

In a biofilm such as the subgingival microflora, strain-specific properties or factors induced by the host may impart a survival advantage to some bacterial strains. Periodontal disease has been associated with chronic obstructive pulmonary disease (COPD) and we previously found high amounts of Veillonella in the subgingival microflora of COPD subjects. Differentiation of Veillonella is difficult. The aims of this study were to identify subgingival Veillonella isolates by phenotypic, genetic typing and molecular genetic methods, and further, to assess if Veillonella strain properties or identity correlated with periodontal disease or COPD. From 22 subjects, 26 subgingival Veillonella isolates and one pulmonary isolate were analysed. The majority of the subgingival Veillonella isolates were identified as Veillonella parvula. Genotyping showed heterogeneity within strains of the same species. A subgingival and pulmonary isolate in one COPD subject was found to be genetically identical strains of V. parvula. Scanning electron microscopy of the lung biopsy confirmed single small cocci adhering or coaggregating with larger cocci on the airway epithelium. Apart from a variation in cellular fatty acid composition of six subgingival isolates from periodontitis subjects, no correlation between the subgingival Veillonella strains or genotypes and the presence of either periodontitis or COPD was found. In conclusion, V. parvula was the predominant subgingival Veillonella species with high genetic variability within strains of the same species. Subgingival V. parvula can translocate to the lungs; however, Veillonella identity or genotype did not correlate with periodontal disease or COPD.


Assuntos
Placa Dentária/microbiologia , Gengiva/microbiologia , Veillonella/isolamento & purificação , Animais , Genótipo , Humanos , Doenças Periodontais/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Veillonella/classificação , Veillonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA