Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535922

RESUMO

Xenobiotics never appear as single, isolated substances in the environment but instead as multi-component mixtures. However, our understanding of the ecotoxicology of mixtures is far from sufficient. In this study, three active pharmaceutical ingredients (carbamazepine, diclofenac, and ibuprofen) and three pesticides (S-metolachlor, terbuthylazine, and tebuconazole) from the most frequently detected emerging micropollutants were examined for their acute cytotoxicity, both individually and in combination, by bioluminescence inhibition in Aliivibrio fischeri (NRRL B-11177). Synergy, additive effects, and antagonism on cytotoxicity were determined using the combination index (CI) method. Additionally, PERMANOVA was performed to reveal the roles of these chemicals in binary, ternary, quaternary, quinary, and senary mixtures influencing the joint effects. Statistical analysis revealed a synergistic effect of diclofenac and carbamazepine, both individually and in combination within the mixtures. Diclofenac also exhibited synergy with S-metolachlor and when mixed with ibuprofen and S-metolachlor. S-metolachlor, whether alone or paired with ibuprofen or diclofenac, increased the toxicity at lower effective concentrations in the mixtures. Non-toxic terbuthylazine showed great toxicity-enhancing ability, especially at low concentrations. Several combinations displayed synergistic effects at environmentally relevant concentrations. The application of PERMANOVA was proven to be unique and successful in determining the roles of compounds in synergistic, additive, and antagonistic effects in mixtures at different effective concentrations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38180316

RESUMO

A Gram-stain-negative strain, designated as D2M1T was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1T belongs to the genus Acidovorax, with the highest 16S rRNA gene similarity to Acidovorax delafieldii DSM 64T (99.93 %), followed by Acidovorax radicis DSM 23535T (98.77 %) and Acidovorax kalamii MTCC 12652T (98.76 %). The draft genome sequence of strain D2M1T is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain D2M1T and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1T is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1T were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major ubiquinone of strain D2M1T was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1T represents a novel species of the genus Acidovorax, for which the name of Acidovorax benzenivorans sp. nov. is proposed. The type strain of the species is strain D2M1T (=DSM 115238T=NCAIM B.02679T).


Assuntos
Hidrocarbonetos Aromáticos , Xilenos , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias
3.
Environ Sci Technol ; 57(7): 2846-2855, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752053

RESUMO

Among monoaromatic hydrocarbons, xylenes, especially the ortho and para isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus Pseudomonas were the most dominant in both types of enrichments, the Rhodoferax and Azovibrio lineages were only abundant under microaerobic conditions, while Sphingobium entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a Rhodoferax-related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains Sphingobium sp. AS12 and Pseudomonas sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus Sphingobium are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.


Assuntos
Dioxigenases , Hidrocarbonetos Aromáticos , Xilenos/análise , Xilenos/metabolismo , Filogenia , Hidrocarbonetos Aromáticos/metabolismo , Bactérias/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Biodegradação Ambiental
4.
Front Microbiol ; 13: 929128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204622

RESUMO

Members of the genus Pseudomonas are known to be widespread in hydrocarbon contaminated environments because of their remarkable ability to degrade a variety of petroleum hydrocarbons, including BTEX (benzene, toluene, ethylbenzene and xylene) compounds. During an enrichment investigation which aimed to study microaerobic xylene degradation in a legacy petroleum hydrocarbon-contaminated groundwater, a novel Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated as MAP12T was isolated. It was capable of degrading benzene, toluene, meta- and para- xylene effectively under both aerobic and microaerobic conditions. The 16S rRNA gene sequence analysis revealed that strain MAP12T belongs to the genus Pseudomonas, with the highest 16S rRNA gene similarity to Pseudomonas linyingensis LYBRD3-7 T (98.42%), followed by Pseudomonas sagittaria JCM 18195 T (98.29%) and Pseudomonas alcaliphila JCM 10630 T (98.08%). Phylogenomic tree constructed using a concatenated alignment of 92 core genes indicated that strain MAP12T is distinct from any known Pseudomonas species. The draft genome sequence of strain MAP12T is 4.36 Mb long, and the G+C content of MAP12T genome is 65.8%. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed that strain MAP12T is distinctly separated from its closest neighbors (OrthoANI < 89 %; dDDH < 36%). Though several members of the genus Pseudomonas are well known for their aerobic BTEX degradation capability, this is the first report of a novel Pseudomonas species capable of degrading xylene under microaerobic conditions. By applying genome-resolved metagenomics, we were able to partially reconstruct the genome of strain MAP12 T from metagenomics sequence data and showed that strain MAP12 T was an abundant member of the xylene-degrading bacterial community under microaerobic conditions. Strain MAP12T contains ubiquinone 9 (Q9) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine as major polar lipids. The major cellular fatty acids of strain MAP12T are summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0 and summed feature 8 (C18:1ω6c and/or C18:1ω7c). The results of this polyphasic study support that strain MAP12T represents a novel species of the genus Pseudomonas, hence the name of Pseudomonas aromaticivorans sp. nov. is proposed for this strain considering its aromatic hydrocarbon degradation capability. The type strain is MAP12T (=LMG 32466, =NCAIM B.02668).

5.
Antonie Van Leeuwenhoek ; 115(9): 1113-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841500

RESUMO

In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).


Assuntos
Benzeno , Comamonadaceae , Técnicas de Tipagem Bacteriana , Derivados de Benzeno , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tolueno
6.
Syst Appl Microbiol ; 45(4): 126339, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35714383

RESUMO

From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.


Assuntos
Actinomycetales , Nocardioides , Técnicas de Tipagem Bacteriana , Composição de Bases , Biofilmes , Carbamazepina , DNA Bacteriano/genética , Ácidos Graxos/análise , Ibuprofeno , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
7.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448861

RESUMO

Aflatoxin B1 (AFB1) is a potent mycotoxin and natural carcinogen. The primary producers of AFB1 are Aspergillus flavus and A. parasiticus. Sterigmatocystin (STC), another mycotoxin, shares its biosynthetic pathway with aflatoxins. While there are abundant data on the biological effects of AFB1, STC is not well characterised. According to published data, AFB1 is more harmful to biological systems than STC. It has been suggested that STC is about one-tenth as potent a mutagen as AFB1 as measured by the Ames test. In this research, the biological effects of S9 rat liver homogenate-activated and non-activated STC and AFB1 were compared using two different biomonitoring systems, SOS-Chromotest and a recently developed microinjection zebrafish embryo method. When comparing the treatments, activated STC caused the highest mortality and number of DNA strand breaks across all injected volumes. Based on the E. coli SOS-Chromotest, the two toxins exerted the same genotoxicities. Moreover, according to the newly developed zebrafish microinjection method, STC appeared more toxic than AFB1. The scarce information correlating AFB1 and STC toxicity suggests that AFB1 is a more potent genotoxin than STC. Our findings contradict this assumption and illustrate the need for more complex biomonitoring systems for mycotoxin risk assessment.


Assuntos
Aflatoxinas , Esterigmatocistina , Aflatoxina B1/toxicidade , Animais , Escherichia coli , Microinjeções , Esterigmatocistina/toxicidade , Peixe-Zebra
8.
Artigo em Inglês | MEDLINE | ID: mdl-35138241

RESUMO

Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).


Assuntos
Alphaproteobacteria/classificação , Benzeno , Filogenia , Xilenos , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Benzeno/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Hidrocarbonetos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xilenos/metabolismo
9.
Environ Sci Pollut Res Int ; 29(19): 28431-28445, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34989990

RESUMO

To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.


Assuntos
Comamonadaceae , Água Subterrânea , Microbiota , Bactérias Aeróbias/metabolismo , Benzeno/metabolismo , Biodegradação Ambiental , Comamonadaceae/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo
10.
Pathogens ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358021

RESUMO

The usage of bottled water dispensers (BWDs) has spread worldwide. Despite their popularity, few studies have dealt with their microbial contaminants, and little attention is given to their fungal contamination. To our knowledge this is the first mycological study of BWDs in Europe. 36 devices have been examined in Budapest, Hungary. Despite of the strictly regulated water hygiene system in Hungary, molds and yeasts were detected in 86.8% of the samples, 56.76% were highly contaminated. Elevated heterotrophic plate counts were also observed in all samples compared to that of Hungarian drinking water. As all physical and chemical water quality characteristics have met the relevant national and European parametric values and neither totally explained the results of microbial counts, the effect of usage and maintenance habits of the devices were examined. Fungal concentrations were affected by the time elapsed since disinfection, days remaining until expiration of bottles, month of sampling and exposure to sunlight during storage. Microbes are able to proliferate in the bottled water and disperse inside the BWDs. Many of the detected fungal species (Sarocladium kiliense, Acremonium sclerotigenum/egyptiacum, Exophiala jeanselmei var. lecanii-corni, Exophiala equina, Meyerozyma guilliermondii, Cystobasidium slooffiae, Aspergillus jensenii, Bisifusarium biseptatum) are opportunistic pathogens for subpopulations of sensitive age groups and patients with immunodeficient conditions, including cystic fibrosis. Thus BWDs may pose a health risk to visitors of healthcare institutions, especially to patients with oral lesions in dental surgeries. The study draws attention to the need to investigate microbial contamination of these devices in other countries as well.

11.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208060

RESUMO

Mycotoxins are toxic metabolites of filamentous fungi. Previous studies demonstrated the co-occurrence of Fusarium and Alternaria toxins, including zearalenone (ZEN), ZEN metabolites, and alternariol (AOH). These xenoestrogenic mycotoxins appear in soy-based meals and dietary supplements, resulting in the co-exposure to ZEN and AOH with the phytoestrogen genistein (GEN). In this study, the cytotoxic and estrogenic effects of ZEN, reduced ZEN metabolites, AOH, and GEN are examined to evaluate their individual and combined impacts. Our results demonstrate that reduced ZEN metabolites, AOH, and GEN can aggravate ZEN-induced toxicity; in addition, the compounds tested exerted mostly synergism or additive combined effects regarding cytotoxicity and/or estrogenicity. Therefore, these observations underline the importance and the considerable risk of mycotoxin co-exposure and the combined effects of mycoestrogens with phytoestrogens.


Assuntos
Estrogênios/toxicidade , Genisteína/toxicidade , Lactonas/toxicidade , Zearalenona/metabolismo , Zearalenona/toxicidade , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Genisteína/química , Células HeLa , Humanos , Lactonas/química , Micotoxinas/toxicidade , Oxirredução , Zearalenona/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-34309507

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterial strain (UP-52T) was isolated from hydrocarbon-polluted groundwater located near an oil refinery in Tiszaujvaros, Hungary. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Dyadobacter in the family Cytophagaceae. Its closely related species are Dyadobacter frigoris (98.00 %), Dyadobacter koreensis (97.64 %), Dyadobacter psychrophilus (97.57 %), Dyadobacter ginsengisoli (97.56 %) and Dyadobacter psychrotolerans (97.20 %). The predominant fatty acids are summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω7c/C16 : 1 ω6c), C15 : 0 iso, C16 : 1 ω5c and C17 : 0 iso 3OH. The predominant respiratory quinone detected in strain UP-52T is quinone MK-7. The dominant polar lipids are glycolipid, phosphoaminolipid, phospholipid and aminolipid. The DNA G+C content is 40.0 mol%. Flexirubin-type pigment was present. Based on these phenotypic, chemotaxonomic and phylogenetic results, UP-52T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter subterraneus sp. nov. is proposed. The type strain is UP-52T (=NCAIM B.02653T=CCM 9030T).


Assuntos
Cytophagaceae/classificação , Água Subterrânea/microbiologia , Indústria de Petróleo e Gás , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Hidrocarbonetos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes Químicos da Água
13.
Water Res ; 189: 116572, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157414

RESUMO

In the field of microplastic (MP) research in the environment, a significant amount of the currently reported results is uncertain because of the inappropriate methods of sampling, detection and quantification of MPs. Fortunately, many research groups are aware of these challenges, but validated methods, which are the prerequisite of standardized measurements, are scarce. Recovery tests are especially rare in the field of MP sampling. The aim of our research was to take a step forward and collect data on cascade filtration recoveries by modeling different turbulance conditions and sampling depth applying environmentally relevant MP concentrations while obtaining large sample volumes. As reference materials, different polymer types (polyethylene - PE; polypropylene - PP; poly[ethylene terephthalate] - PET; poly[vinyl chloride] - PVC; polyamide - PA) and shapes (sphere, fragment, fiber) were used, and for detection near-infrared spectroscopy/microscopy was applied. The developed method provides information not only on system based MP losses, but on sampling efficiency in a model environment as well. Based on the results, the highest recovery rate of all polymers was 31.4% on average, sampled from the water surface during continuous stirring. In these conditions, 92.4% of the PE spheres and 31.9% of the PE fragments were recovered. This indicates, particles reported in environmental monitoring studies might be less than the real environmental concentration. We can conclude, that surface sampling is more efficient than sampling in a deeper layer of the water column. Our research revealed, that the widespread application of microspheres as reference materials might lead to too optimistic recovery values. The application of reference particles (fragments, fibers) with higher environmental relevance shows much lower recovery rates. Our results highlight, that validating the efficiency of the whole sampling process from the environment is more important than measuring only the filtration device's recovery. This study helps us to better understand the relationship and the possible gaps between the reported MP results and the real-life concentrations in the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Polímeros , Poluentes Químicos da Água/análise
14.
Toxins (Basel) ; 12(11)2020 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266415

RESUMO

Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.


Assuntos
Rim/efeitos dos fármacos , Ocratoxinas/toxicidade , Animais , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ocratoxinas/sangue , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética
15.
Environ Sci Pollut Res Int ; 27(25): 31130-31142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32474783

RESUMO

The primary aims of this present study were to evaluate the effect of oxygen limitation on the bacterial community structure of enrichment cultures degrading either benzene or toluene and to clarify the role of Malikia-related bacteria in the aerobic degradation of BTEX compounds. Accordingly, parallel aerobic and microaerobic enrichment cultures were set up and the bacterial communities were investigated through cultivation and 16S rDNA Illumina amplicon sequencing. In the aerobic benzene-degrading enrichment cultures, the overwhelming dominance of Malikia spinosa was observed and it was abundant in the aerobic toluene-degrading enrichment cultures as well. Successful isolation of a Malikia spinosa strain shed light on the fact that this bacterium harbours a catechol 2,3-dioxygenase (C23O) gene encoding a subfamily I.2.C-type extradiol dioxygenase and it is able to degrade benzene, toluene and ethylbenzene under clear aerobic conditions. While quick degradation of the aromatic substrates was observable in the case of the aerobic enrichments, no significant benzene degradation, and the slow degradation of toluene was observed in the microaerobic enrichments. Despite harbouring a subfamily I.2.C-type C23O gene, Malikia spinosa was not found in the microaerobic enrichments; instead, members of the Pseudomonas veronii/extremaustralis lineage dominated these communities. Whole-genome analysis of M. spinosa strain AB6 revealed that the C23O gene was part of a phenol-degrading gene cluster, which was acquired by the strain through a horizontal gene transfer event. Results of the present study revealed that bacteria, which encode subfamily I.2.C-type extradiol dioxygenase enzyme, will not be automatically able to degrade monoaromatic hydrocarbons under microaerobic conditions.


Assuntos
Comamonadaceae , Tolueno , Benzeno , Derivados de Benzeno , Biodegradação Ambiental , Oxigênio , Pseudomonas , Xilenos
16.
Arch Microbiol ; 202(2): 329-342, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31664492

RESUMO

The aim of the present study was to reveal how different microbial communities evolve in diesel fuel/crude oil-contaminated environments under aerobic and microaerobic conditions. To investigate this question, aerobic and microaerobic bacterial enrichments amended with a diesel fuel/crude oil mixture were established and analysed. The representative aerobic enrichment community was dominated by Gammaproteobacteria (64.5%) with high an abundance of Betaproteobacteriales (36.5%), followed by Alphaproteobacteria (8.7%), Actinobacteria (5.6%), and Candidatus Saccharibacteria (4.5%). The most abundant alkane monooxygenase (alkB) genotypes in this enrichment could be linked to members of the genus Rhodococcus and to a novel Gammaproteobacterium, for which we generated a high-quality draft genome using genome-resolved metagenomics of the enrichment culture. Contrarily, in the microaerobic enrichment, Gammaproteobacteria (99%) overwhelmingly dominated the microbial community with a high abundance of the genera Acinetobacter (66.3%), Pseudomonas (11%) and Acidovorax (11%). Under microaerobic conditions, the vast majority of alkB gene sequences could be linked to Pseudomonas veronii. Consequently, results shed light on the fact that the excellent aliphatic hydrocarbon degrading Rhodococcus species favour clear aerobic conditions, while oxygen-limited conditions can facilitate the high abundance of Acinetobacter species in aliphatic hydrocarbon-contaminated subsurface environments.


Assuntos
Biodegradação Ambiental , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Citocromo P-450 CYP4A/genética , Genótipo , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rhodococcus/classificação , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo
17.
Fungal Biol ; 123(9): 650-659, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416584

RESUMO

Washing machines (WMs) are convenient places for fungal colonization. This study is focused on fungal diversity of WMs, and investigates relationships between habits of WM users and colonising species. Housekeeping conditions and habits were assessed in Hungary with a questionnaire. Several fungal species were identified by microscopy and sequence analysis of diagnostic loci. Based on the results, 32 % of the sampled WMs were highly polluted with various species of fungi. Forty six percent of them were colonised also by opportunistically human pathogenic species. In total, 32 yeast and 39 filamentous fungal strains were isolated. Growth tests were conducted with five selected taxa (Cutaneotrichosporon dermatis, Cystobasidium slooffiae, Meyerozyma guilliermondii, Candida parapsilosis and the Fusarium oxysporum species complex (FOSC)) to ascertain their tolerance ranges. None of the examined isolates were able to grow >50 °C, 4.10 < pH < 10.88. FOSC could grow at high salinity. More species were detected in WMs operated in rooms without heating systems (p = 0.0025). The number of species was higher in WMs located in the kitchen than the ones kept in bathroom or in other rooms (p = 0.0205). WMs may serve as a reservoir of pathogenic fungi, the presence of which may depend on the usage of these devices.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Utensílios Domésticos , Contaminação de Equipamentos/estatística & dados numéricos , Fungos/genética , Fungos/crescimento & desenvolvimento , Utensílios Domésticos/estatística & dados numéricos , Filogenia
18.
Aquat Toxicol ; 208: 157-167, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30677711

RESUMO

Environmental estrogens are a serious concern worldwide due to their ubiquity and adverse ecotoxicological and health effects. Chemical structure of these substances is highly diverse, therefore estrogenicity cannot be predicted on the basis of molecular structure. Furthermore, estimation of estrogenicity of environmental samples based on chemical analytics of suspects is difficult given the complex interaction of chemicals and the impact on estrogenicity. The full estrogenic impact of an environmental sample can thus only be revealed by a series of sensitive in vitro and in vivo ecotoxicological tests. Herein we describe a vitellogenin reporter transgenic zebrafish line (Tg(vtg1:mCherry)) that enables the detection of estrogenicity in the environmentally relevant, low concentration ranges in embryonic tests that are in accordance with 3Rs and relevant animal welfare regulations. The transgene construct used for the development of Tg(vtg1:mCherry) carried a long (3.4 kbp) natural vitellogenin-1 promoter sequence with a high number of ERE sites. A test protocol was developed based on our finding that the endogenous vitellogenin and the reporter show similar spatial expression pattern and both endogenous and vitellogenin reporter is only produced in the left hepatic lobe of 5 dpf zebrafish embryos. Seven generations of Tg(vtg1:mCherry) have been established, and the estrogen responsiveness was tested with different estrogenic substances and wastewater samples. Embryos were exposed from 3 to 5 days post fertilization (dpf). Fluorescence in embryos could be detected upon treatment with 17-ß-estradiol from a concentration of 100 ng/L, 17-α-ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and bisphenol-A from 1 mg/L. In the adult stage transgene activity appeared to be more sensitive to estrogen treatment, with detectable transgene activity from 5 ng/L 17-ß-estradiol concentration. The transgenic line Tg(vtg1:mCherry) was also suitable for the direct measurement of estrogenicity in wastewater samples without sample extraction. The detection of estrogenic activity using the reporter line was confirmed by the bioluminescent yeast estrogen screen.


Assuntos
Estrogênios/análise , Fígado/metabolismo , Vitelogeninas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Embrião não Mamífero/metabolismo , Estradiol/metabolismo , Fluorescência , Heterozigoto , Homozigoto , Fígado/efeitos dos fármacos , Masculino , Elementos de Resposta/genética , Transgenes , Águas Residuárias/química , Poluentes Químicos da Água/análise , Peixe-Zebra/embriologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33688800

RESUMO

A benzene, para- and meta-xylene-degrading Gram-stain-negative, aerobic, yellow-pigmented bacterium, designated as D2P1T, was isolated from a para-xylene-degrading enrichment culture. Phylogenetic analyses based on 16S rRNA genes showed that D2P1T shares a distinct phyletic lineage within the genus Hydrogenophaga and shows highest 16S rRNA gene sequence similarity to Hydrogenophaga taeniospiralis NBRC 102512T (99.2 %) and Hydrogenophaga palleronii NBRC 102513T (98.3 %). The draft genome sequence of D2P1T is 5.63 Mb long and the genomic DNA G+C content is 65.5 %. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed low genomic relatedness to its closest relatives (OrthoANI <86 %; dDDH <30 %). D2P1T contains ubiquinone 8 (Q-8) as the only respiratory quinone and phospholipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol as major polar lipids. The main whole-cell fatty acids of D2P1T are summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polyphasic taxonomic results indicated that strain D2P1T represents a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga aromaticivorans sp. nov. is proposed. The type strain is D2P1T (=LMG 31780T=NCAIM B 02655T).

20.
Chemosphere ; 216: 110-116, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30359912

RESUMO

In the past few years, there has been a significant development in freshwater microplastic research. Pollution has been detected in lakes and rivers of several continents, but the number of papers is still marginal compared to the ones investigating marine environments. In this study, we present the first detection of microplastics (MPs) in Central and Eastern European (CEE) surface waters and, globally, the first detection in fish ponds. Samples were taken from different types of fish ponds and natural water bodies along a novel concept down to a particle size of 100 µm, then, after sample preparation, MPs were characterized using an FTIR microscope. 92% of the water samples contained MPs ranging from 3.52 to 32.05 particles/m3. MPs were detected in 69% of the sediment samples ranging from 0.46 to 1.62 particles/kg. Dominant abundance of polypropylene (PP) and polyethylene was shown in water and PP and polystyrene in sediment samples. First results also indicate that fish ponds may act as a deposition area for MPs.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Plásticos/análise , Lagoas/química , Animais , Poluição Ambiental/análise , Europa (Continente) , Tamanho da Partícula , Polímeros/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA