Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013336

RESUMO

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Assuntos
Antígenos CD34 , Apoptose , Micropartículas Derivadas de Células , Sangue Fetal , Células-Tronco Hematopoéticas , Estresse Oxidativo , Humanos , Sangue Fetal/citologia , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Micropartículas Derivadas de Células/metabolismo , Células HL-60 , Peroxidação de Lipídeos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Stem Cell Rev Rep ; 20(4): 938-966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407793

RESUMO

The aim of the study is to determine the effectiveness of stem cells in scaffolds in the treatment of bone deficits, in regard of bone regeneration, safety, rehabilitation and quality of life in humans. The systematic review was conducted in accordance with PRISMA 2020. A systematic search was conducted in three search engines and two registries lastly in 29-9-2022.for studies of the last 15 years. The risk of bias was assessed with RoB-2, ROBINS- I and NIH Quality of Before-After (Pre-Post) Studies with no Control group. The certainty of the results was assessed with the GRADE assessment tool. Due to heterogeneity, the results were reported in tables, graphs and narratively. The study protocol was published in PROSPERO with registration number CRD42022359049. Of the 10,091 studies retrieved, 14 were meeting the inclusion criteria, and were qualitatively analyzed. 138 patients were treated with mesenchymal stem cells in scaffolds, showing bone healing in all cases, and even with better results than the standard care. The adverse events were mild in most cases and in accordance with the surgery received. When assessed, there was a rehabilitation of the deficit and a gain in quality of life was detected. Although the heterogeneity between the studies and the small number of patients, the administration of mesenchymal stem cells in scaffolds seems safe and effective in the regeneration of bone defects. These results pave the way for the conduction of more clinical trials, with greater number of participants, with more standardized procedures.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Alicerces Teciduais , Humanos , Células-Tronco Mesenquimais/citologia , Qualidade de Vida , Ensaios Clínicos como Assunto
3.
Stem Cell Rev Rep ; 19(8): 2957-2979, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751010

RESUMO

The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.


Assuntos
Osteoartrite , Proteômica , Ratos , Humanos , Camundongos , Animais , Cromatografia Líquida , Secretoma , Espectrometria de Massas em Tandem , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Osteoartrite/terapia , Osteoartrite/genética , Células-Tronco/metabolismo
4.
Cell Tissue Res ; 393(2): 321-342, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37249709

RESUMO

Development of clinical-grade, cell preparations is central to cGMP (good manufacturing practice compliant) conditions. This study aimed to investigate the potential of two serum/xeno-free, cGMP (StemPro, StemMacs) culture media to maintain "stemness" of human minor salivary gland stem cell (mSG-SC) cultures compared to a complete culture medium (CCM). Overall, StemMacs resulted in higher proliferation rates after p.6 compared to the conventional serum-based medium, while StemPro showed substantial delays in cell proliferation after p.9. The mSG-SCs cultures exhibited two distinct cell populations at early passages a mesenchymal subpopulation and an epithelial-like subpopulation. Expression of several markers (CD146, STRO-1, SSEA-4, CD105, CD106, CD34, K 7/8, K14, K18) variably decreased with prolonged passaging (all three media). The percentage of SA-ß-gal positive cells was initially higher for StemMacs compared to StemPro/CCM and increased with prolonged passaging in all cases. The telomere fragment length decreased with prolonged passaging in all three media but more pronouncedly for the CCM. Expansion under serum-free conditions caused pronounced upregulation of ALP and BMP-2, with parallel complete elimination of the baseline expressions of LPL (all three media) and ACAN (serum-free media), therefore, showing a preferential shift of the mSG-SCs towards osteogenic phenotypes. Finally, several markers (Nanog, SOX-2, PDX-1, OTX2, GSC, HCG) decreased with prolonged culture, indicating successive loss of "stemness". Based on the findings, it seems that StemPro preserve stemness of the mSG-SCs after prolonged culture. Nevertheless, there is still a vacant role for the ideal development of clinical-grade culture conditions.


Assuntos
Células-Tronco Mesenquimais , Humanos , Diferenciação Celular , Glândulas Salivares Menores , Células-Tronco , Técnicas de Cultura de Células/métodos , Biomarcadores/metabolismo , Proliferação de Células , Meios de Cultura/farmacologia , Células Cultivadas
5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047021

RESUMO

In this study, we investigated the effect of oxygen tension on the expansion of ADMSCs and on their differentiation toward their chondrocytic phenotype, regenerating a lab-based cartilaginous tissue with superior characteristics. Controversial results with reference to MSCs that were cultured under different hypoxic levels, mainly in 2D culturing settings combined with or without other biochemical stimulus factors, prompted our team to study the role of hypoxia on MSCs chondrogenic differentiation within an absolute 3D environment. Specifically, we used 3D-printed honeycomb-like PCL matrices seeded with ADMSCs in the presence or absence of TGF and cultured with a prototype 3D cell culture device, which was previously shown to favor nutrient/oxygen supply, cell adhesion, and infiltration within scaffolds. These conditions resulted in high-quality hyaline cartilage that was distributed uniformly within scaffolds. The presence of the TGF medium was necessary to successfully produce cartilaginous tissues with superior molecular and increased biomechanical properties. Despite hypoxia's beneficial effect, it was overall not enough to fully differentiate ADMSCs or even promote cell expansion within 3D scaffolds alone.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Cartilagem Hialina , Hipóxia/metabolismo , Impressão Tridimensional , Oxigênio/metabolismo , Alicerces Teciduais/química , Diferenciação Celular , Células Cultivadas , Engenharia Tecidual/métodos , Condrogênese
6.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203178

RESUMO

OBJECTIVES: The term "inflammageing" describes the process of inflammation-induced aging that leads living cells to a state of permanent cell cycle arrest due to chronic antigenic irritation. This in vitro study aimed to shed light on the mechanisms of "inflammageing" on human oral cells. METHODS: Primary cultures of human gingival fibroblasts (hGFs) were exposed to variable pro-inflammatory stimuli, including lipopolysaccharide (LPS), Tumor Necrosis Factor-alpha (TNFa), and gingival crevicular fluid (GCF) collected from active periodontal pockets of systemically healthy patients. Inflammageing was studied through two experimental models, employing either late-passage ("aged") cells (p. 10) that were exposed to the pro-inflammatory stimuli or early-passage ("young") cells (p. 1) continuously exposed during a period of several passages (up to p. 10) to the above-mentioned stimuli. Cells were evaluated for the expression of beta-galactosidase activity (histochemical staining), senescence-associated genes (qPCR analysis), and biomarkers related to a Senescence-Associated Secretory Phenotype (SASP), through proteome profile analysis and bioinformatics. RESULTS: A significant increase (p < 0.05) in beta-galactosidase-positive cells was observed after exposure to each pro-inflammatory stimulus. The senescence-associated gene expression included upregulation for CCND1 and downregulation for SUSD6, and STAG1, a profile typical for cellular senescence. Overall, pro-inflammatory priming of late-passage cells caused more pronounced effects in terms of senescence than long-term exposure of early-passage cells to these stimuli. Proteomic analysis showed induction of SASP, evidenced by upregulation of several pro-inflammatory proteins (IL-6, IL-10, IL-16, IP-10, MCP-1, MCP-2, M-CSF, MIP-1a, MIP-1b, TNFb, sTNF-RI, sTNF-RII, TIMP-2) implicated in cellular aging and immune responses. The least potent impact on the induction of SASP was provoked by LPS and the most pronounced by GCF. CONCLUSION: This study demonstrates that long-term exposure of hGFs to various pro-inflammatory signals induced or accelerated cellular senescence with the most pronounced impact noted for the late-passage cells. The outcome of these analyses provides insights into oral chronic inflammation as a potential confounder of age-related diseases.


Assuntos
Lipopolissacarídeos , Proteômica , Humanos , Lipopolissacarídeos/toxicidade , Envelhecimento , Inflamação , beta-Galactosidase
7.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572766

RESUMO

This study aims to investigate the influence of isocitrate dehydrogenase gene family (IDH) mutations, World Health Organization (WHO) grade, and mechanical preconditioning on glioma and adjacent brain elasticity through standard monotonic and repetitive atomic force microscope (AFM) nanoindentation. The elastic modulus was measured ex vivo on fresh tissue specimens acquired during craniotomy from the tumor and the peritumoral white matter of 16 diffuse glioma patients. Linear mixed-effects models examined the impact of tumor traits and preconditioning on tissue elasticity. Tissues from IDH-mutant cases were stiffer than those from IDH-wildtype ones among anaplastic astrocytoma patients (p = 0.0496) but of similar elasticity to IDH-wildtype cases for diffuse astrocytoma patients (p = 0.480). The tumor was found to be non-significantly softer than white matter in anaplastic astrocytomas (p = 0.070), but of similar elasticity to adjacent brain in diffuse astrocytomas (p = 0.492) and glioblastomas (p = 0.593). During repetitive indentation, both tumor (p = 0.002) and white matter (p = 0.003) showed initial stiffening followed by softening. Stiffening was fully reversed in white matter (p = 0.942) and partially reversed in tumor (p = 0.015). Tissue elasticity comprises a phenotypic characteristic closely related to glioma histopathology. Heterogeneity between patients should be further explored.

8.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361761

RESUMO

Cocaine toxicity has been a subject of study because cocaine is one of the most common and potent drugs of abuse. In the current study the effect of cocaine on human liver cancer cell line (HepG2) was assessed. Cocaine toxicity (IC50) on HepG2 cells was experimentally calculated using an XTT assay at 2.428 mM. The metabolic profile of HepG2 cells was further evaluated to investigate the cytotoxic activity of cocaine at 2 mM at three different time points. Cell medium and intracellular material samples were analyzed with a validated HILIC-MS/MS method for targeted metabolomics on an ACQUITY Amide column in gradient mode with detection on a triple quadrupole mass spectrometer in multiple reaction monitoring. About 106 hydrophilic metabolites from different metabolic pathways were monitored. Multivariate analysis clearly separated the studied groups (cocaine-treated and control samples) and revealed potential biomarkers in the extracellular and intracellular samples. A predominant effect of cocaine administration on alanine, aspartate, and glutamate metabolic pathway was observed. Moreover, taurine and hypotaurine metabolism were found to be affected in cocaine-treated cells. Targeted metabolomics managed to reveal metabolic changes upon cocaine administration, however deciphering the exact cocaine cytotoxic mechanism is still challenging.


Assuntos
Alanina/metabolismo , Ácido Aspártico/metabolismo , Cocaína/toxicidade , Ácido Glutâmico/metabolismo , Metaboloma/efeitos dos fármacos , Biomarcadores/metabolismo , Cromatografia Líquida , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Redes e Vias Metabólicas , Metabolômica/métodos , Análise Multivariada , Espectrometria de Massas em Tandem , Taurina/análogos & derivados , Taurina/metabolismo
9.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802984

RESUMO

Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.


Assuntos
Organismos Aquáticos/química , Osso e Ossos/fisiologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polissacarídeos/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Elasticidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
10.
Neurol Res ; 42(12): 1018-1026, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32705967

RESUMO

Brain gliomas represent some of the most aggressive tumors encountered by modern medicine and, despite major efforts to optimize early diagnosis and treatment, the prognosis remains poor. Due to the complex structure of the brain and the unique mechanical properties of the extracellular matrix, gliomas invade and expand into the brain parenchyma, along white matter tracts and within perivascular spaces, usually sparing normal vessels. Different methods have been developed to study the mechanical properties of gliomas in a wide range of scales, from cells and the microscale to tissues and the macroscale. In this review, the current view on glioma mechanics is presented and the methods used to determine glioma mechanical properties are outlined. Their principles and current state of affairs are discussed.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Técnicas de Imagem por Elasticidade , Glioma/patologia , Técnicas de Imagem por Elasticidade/métodos , Glioma/diagnóstico , Humanos , Microscopia de Força Atômica/métodos , Prognóstico
11.
Stem Cell Rev Rep ; 16(6): 1222-1241, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32556944

RESUMO

PURPOSE: Mesenchymal stem cells (MSCs) have appeared as a promising regenerative cell-based therapeutic, for degenerative conditions, such as OA, while the beneficial results from the application of MSCs have been attributed to the MSCs-derived secretome, which is the sum of cytoprotective factors produced by the MSCs. Aim of this study was to systematically review the literature in order to assess whether stem cell secretome (conditioned medium-CM, exosome-Exos or microvesicles-MV)(CM/Exos/MVs) treatment reduces inflammation and enhances cartilage regeneration in preclinical studies of experimental arthritis. MATERIALS AND METHODS: An extensive electronic search was conducted by 2 independent reviewers by using the PubMed, Cochrane Library, Web of Science, and Scopus database, as well as Google Scholar, in order to identify the studies that met our inclusion criteria until August 2019. Included studies were assessed for quality and Risk of Bias (RoB) using the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines and a modification of Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) RoB tool for animal studies, respectively. RESULTS: The initial search provided 525 records, with 28 fulfilling the inclusion criteria. The included studies presented great heterogeneity regarding the stem cells used, the preparation of therapeutic agent as well as the animal models used for testing. In addition, most studies presented with an unclear or high risk bias. CONCLUSION: In summary, the positive results of CM/Exos/MVs application in preclinical models of experimentally induced OA in terms of resolution of inflammation and cartilage regeneration are highlighted in this review, presenting a promising therapeutic solution for OA.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Meios de Cultivo Condicionados/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoartrite/patologia , Viés de Publicação , Risco
12.
Stem Cell Rev Rep ; 16(2): 276-287, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31950339

RESUMO

Standard treatment options for rheumatoid arthritis (RA) often fail to deliver a long-term therapeutic outcome and in many cases cause intractable adverse events leading to treatment discontinuation or readjustment. Treatment with mesenchymal stem cells (MSCs) has been recently studied in RA due to its immunomodulatory and anti-inflammatory capacities. Thus, this study aims at systematically search and review the literature for randomized or non-randomized clinical trials comparing interventions of MSCs with placebo in RA patients. Electronic searches were conducted on PubMed, SCOPUS, Cochrane-CENTRAL, registries of clinical trials and grey literature. Selected studies were estimated for risk of bias with the Cochrane RoB tool 2 or the ROBINS-I tool. Four trials met the eligibility criteria and entered the review process. Identified MSCs treatments varied from allogeneic to autologous or umbilical cord-derived cells. Enrolled patients had an active RA and had poor responses to previous standard medications. In general, the safety evaluation revealed that treatment with MSCs was safe and well tolerated. Regarding the efficacy measurements, modest improvements were found in RA symptoms and RA-related indices. Significant decreases were found in inflammatory molecules such as C-reactive protein, tumor necrosis factor alpha and interleukin 6. However, clinical response criteria related to RA were achieved by a low-to-moderate percentage of patients. In conclusion, treatment of RA with MSCs appears to have a short-term therapeutic effect. Better-designed randomized trials with sufficient follow-up periods are needed so that the long-term safety and efficacy interventions with MSCs would be elucidated.


Assuntos
Artrite Reumatoide/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Artrite Reumatoide/patologia , Humanos , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco , Resultado do Tratamento
13.
Colloids Surf B Biointerfaces ; 183: 110403, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400614

RESUMO

Efforts on bioengineering are directed towards the construction of biocompatible scaffolds and the determination of the most favorable microenvironment, which will better support cell proliferation and differentiation. Perfusion bioreactors are attracting growing attention as an effective, modern tool in tissue engineering. A natural biomaterial extensively used in regenerative medicine with outstanding biocompatibility, biodegradability and non-toxic characteristics, is collagen, a structural protein with undisputed beneficial characteristics. This is a study designed according to the above considerations. 3D printed polycaprolactone (PCL) scaffolds with rectangular pores were coated with collagen either as a coating on the scaffold's trabeculae, or as a gel-cell solution penetrating scaffolds' pores. We employed histological, molecular and imaging techniques to analyze colonization, proliferation and chondrogenic differentiation of Adipose Derived Mesenchymal Stem Cells (ADMSCs). Two different differentiation culture media were employed to test chondrogenic differentiation on gelated and non gelated PCL scaffolds in static and in perfusion bioreactors dynamic culture conditions. In dynamic culture, non gelated scaffolds combined with our in house TGF-ß2 based medium, augmented chondrogenic differentiation performance, which overall was significantly less favorable compared to StemPro™ propriety medium. The beneficial mechanical stimulus of dynamic culture, appears to outgrow the disadvantage of the "weaker" TGF-ß2 medium used for chondrogenic differentiation. Even though cells in static culture grew well on the scaffold, there was limited penetration inside the construct, so the purpose of the 3D culture was not fully served. In contrast dynamic culture achieved better penetration and uniform distribution of the cells within the scaffold.


Assuntos
Cartilagem/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Colágeno/farmacologia , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Agrecanas/genética , Agrecanas/metabolismo , Materiais Biocompatíveis , Biomarcadores/metabolismo , Reatores Biológicos , Cartilagem/citologia , Cartilagem/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/genética , Colágeno/química , Meios de Cultura/química , Meios de Cultura/farmacologia , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Porosidade , Cultura Primária de Células , Impressão Tridimensional , Regeneração/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Propriedades de Superfície
14.
J Tissue Eng Regen Med ; 13(2): 342-355, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30637991

RESUMO

We used additive manufacturing to fabricate 3D-printed polycaprolactone scaffolds of different geometry topologies and porosities. We present a comparative analysis of hyaline cartilage development from adipose-tissue-derived mesenchymal stem cells (ADMSCs) on three different, newly designed scaffold geometry patterns. The first scaffold design (MESO) was based on a rectilinear layer pattern. For the second pattern (RO45), we employed a 45° rotational layer loop. The design for the third scaffold (3DHC) was a three-dimensional honeycomb-like pattern with a hexagonal cellular distribution and small square shapes. We examined cell proliferation, colonization, and differentiation, in relation to the scaffold's structure, as well as to the mechanical properties of the final constructs. We gave emphasis on the scaffolds, both microarchitecture and macroarchitecture, for optimal and enhanced chondrogenic differentiation, as an important parameter, not well studied in the literature. Among the three patterns tested, RO45 was the most favourable for chondrogenic differentiation, whereas 3DHC better supported cell proliferation and scaffold penetration, exhibiting also the highest rate of increase onto the mechanical properties of the final construct. We conclude that by choosing the optimal scaffold architecture, the resulting properties of our cartilaginous constructs can better approximate those of the physiological cartilage.


Assuntos
Tecido Adiposo/metabolismo , Bioprótese , Cartilagem Hialina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais/química , Tecido Adiposo/citologia , Adulto , Feminino , Humanos , Cartilagem Hialina/citologia , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
15.
Nutr Cancer ; 71(3): 491-507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30273051

RESUMO

Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.


Assuntos
Calpaína/fisiologia , Morte Celular/efeitos dos fármacos , Crocus/química , Glioma/patologia , Extratos Vegetais/farmacologia , Temozolomida/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Sinergismo Farmacológico , Glioma/tratamento farmacológico , Marcação In Situ das Extremidades Cortadas , Ratos
17.
Stem Cell Res Ther ; 8(1): 247, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096714

RESUMO

BACKGROUND: Development of clinical-grade cell preparations is central to meeting the regulatory requirements for cellular therapies under good manufacturing practice-compliant (cGMP) conditions. Since addition of animal serum in culture media may compromise safe and efficient expansion of mesenchymal stem cells (MSCs) for clinical use, this study aimed to investigate the potential of two serum/xeno-free, cGMP culture systems to maintain long-term "stemness" of oral MSCs (dental pulp stem cells (DPSCs) and alveolar bone marrow MSCs (aBMMSCs)), compared to conventional serum-based expansion. METHODS: DPSC and aBMMSC cultures (n = 6/cell type) were established from pulp and alveolar osseous biopsies respectively. Three culture systems were used: StemPro_MSC/SFM_XenoFree (Life Technologies); StemMacs_MSC/XF (Miltenyi Biotek); and α-MEM (Life Technologies) with 15% fetal bovine serum. Growth (population doublings (PDs)), immunophenotypic (flow cytometric analysis of MSC markers) and senescence (ß-galactosidase (SA-ß-gal) activity; telomere length) characteristics were determined during prolonged expansion. Gene expression patterns of osteogenic (ALP, BMP-2), adipogenic (LPL, PPAR-γ) and chondrogenic (ACAN, SOX-9) markers and maintenance of multilineage differentiation potential were determined by real-time PCR. RESULTS: Similar isolation efficiency and stable growth dynamics up to passage 10 were observed for DPSCs under all expansion conditions. aBMMSCs showed lower cumulative PDs compared to DPSCs, and when StemMacs was used substantial delays in cell proliferation were noted after passages 6-7. Serum/xeno-free expansion produced cultures with homogeneous spindle-shaped phenotypes, while serum-based expansion preserved differential heterogeneous characteristics of each MSC population. Prolonged expansion of both MSC types but in particular the serum/xeno-free-expanded aBMMSCs was associated with downregulation of CD146, CD105, Stro-1, SSEA-1 and SSEA-4, but not CD90, CD73 and CD49f, in parallel with an increase of SA-gal-positive cells, cell size and granularity and a decrease in telomere length. Expansion under both serum-free systems resulted in "osteogenic pre-disposition", evidenced by upregulation of osteogenic markers and elimination of chondrogenic and adipogenic markers, while serum-based expansion produced only minor changes. DPSCs retained a diminishing (CCM, StemPro) or increasing (StemMacs) mineralization potential with passaging, while aBMMSCs lost this potential after passages 6-7 under all expansion conditions. CONCLUSIONS: These findings indicate there is still a vacant role for development of qualified protocols for clinical-grade expansion of oral MSCs; a key milestone achievement for translation of research from the bench to clinics.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Agrecanas/genética , Agrecanas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Processo Alveolar/citologia , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Meios de Cultura Livres de Soro/química , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Indústria Farmacêutica/legislação & jurisprudência , Expressão Gênica/efeitos dos fármacos , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Homeostase do Telômero , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Cell Mol Neurobiol ; 36(5): 701-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26239244

RESUMO

Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.


Assuntos
Autofagia/fisiologia , Glucose/metabolismo , Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Neurônios/metabolismo , Células PC12 , Ratos
19.
Cell Physiol Biochem ; 37(5): 1750-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584276

RESUMO

BACKGROUND/AIMS: Increasing amounts of the neurotransmitter glutamate are associated with excitotoxicity, a phenomenon related both to homeostatic processes and neurodegenerative diseases such as multiple sclerosis. METHODS: PC12 cells (rat pheochromocytoma) were treated with various concentrations of the non-essential amino acid glutamate for 0.5-24 hours. The effect of glutamate on cell morphology was monitored with electron microscopy and haematoxylin-eosin staining. Cell survival was calculated with the MTT assay. Expression analysis of chaperones associated with the observed phenotype was performed using either Western Blotting at the protein level or qRT-PCR at the mRNA level. RESULTS: Administration of glutamate in PC12 cells in doses as low as 10 µM causes an up-regulation of GRP78, GRP94 and HSC70 protein levels, while their mRNA levels show the opposite kinetics. At the same time, GAPDH and GRP75 show reduced protein levels, irrespective of their transcriptional rate. On a cellular level, low concentrations of glutamate induce an autophagy-mediated pro-survival phenotype, which is further supported by induction of the autophagic marker LC3. CONCLUSION: The findings in the present study underline a discrete effect of glutamate on neuronal cell fate depending on its concentration. It was also shown that a low dose of glutamate orchestrates a unique expression signature of various chaperones and induces cell autophagy, which acts in a neuroprotective fashion.


Assuntos
Autofagia/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Chaperonas Moleculares/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica , Chaperonas Moleculares/genética , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima/efeitos dos fármacos
20.
Stem Cells Dev ; 24(21): 2496-512, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203919

RESUMO

Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial transdifferentiation of SCAP, uncovering the molecular mechanisms regulating their fate. They also validate the angiogenic properties of their secretome giving insights into preconditioning strategies enhancing their therapeutic potential.


Assuntos
Transdiferenciação Celular/fisiologia , Microambiente Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/fisiologia , Células-Tronco/citologia , Adolescente , Hipóxia Celular/fisiologia , Papila Dentária/citologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA