Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Coll Cardiol ; 80(16): 1545-1556, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36229091

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is common in elderly individuals and is associated with an increased risk of both hematologic malignancies and cardiovascular disease. The impact of CHIP on the outcomes for patients with cardiogenic shock (CS) complicating acute myocardial infarction (AMI) remains undetermined. OBJECTIVES: The purpose of this study was to determine the prognostic impact of CHIP in CS after AMI. METHODS: Blood samples were obtained at randomization from 446 patients included in the CULPRIT-SHOCK (Culprit Lesion Only vs Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock; NCT01927549) trial. CHIP was assessed using a next-generation sequencing approach targeting the most commonly mutated genes; the primary outcome at 30 days comprised all-cause mortality and renal replacement therapy. RESULTS: CHIP variants at ≥2% variant allele frequency were detected in 29% (n = 129), most commonly in the DNMT3A or TET2 genes, which harbored 47% and 36% of all mutations, respectively. Compared to non-CHIP patients, CHIP carriers were older and had decreased renal function and increased levels of N-terminal pro-B-type natriuretic peptide and inflammatory biomarkers. CHIP carriers had worse short-term outcomes measured either as mortality or as the combined clinical endpoint of mortality or severe renal failure within 30 days. Association of CHIP with the combined endpoint was independent of age and biomarkers reflecting kidney function, heart failure severity, and inflammation (OR: 1.83; 95% CI: 1.05-3.21; P = 0.03) but not significant regarding all-cause mortality (OR: 1.67; 95% CI: 0.96-2.90; P = 0.069). CONCLUSIONS: CHIP is frequent among AMI and CS patients and is associated with impaired clinical outcome. CHIP assessment may facilitate risk stratification in patients with CS and imply novel treatment targets. (Culprit Lesion Only vs Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock [CULPRIT-SHOCK]; NCT01927549).


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Idoso , Hematopoiese Clonal , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Peptídeo Natriurético Encefálico , Intervenção Coronária Percutânea/efeitos adversos , Choque Cardiogênico/genética , Resultado do Tratamento
2.
Sci Rep ; 12(1): 13532, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941161

RESUMO

Pancreatic stellate cells (PSCs) constitute important cells of the pancreatic microenvironment and their close interaction with cancer cells is important in pancreatic cancer. It is currently not known whether PSCs accumulate genetic alterations that contribute to tumor biology. Our aim was to analyze genetic alterations in cancer associated PSCs. PSC DNA was matched to DNA isolated from pancreatic cancer patients' blood (n = 5) and analyzed by Next-Generation Sequencing (NGS). Bioinformatic analysis was performed using the GATK software and pathogenicity prediction scores. Sanger sequencing was carried out to verify specific genetic alterations in a larger panel of PSCs (n = 50). NGS and GATK analysis identified on average 26 single nucleotide variants in PSC DNA as compared to the matched blood DNA that could be visualized with the Integrative Genomics Viewer. The absence of PDAC driver mutations (KRAS, p53, p16/INK4a, SMAD4) confirmed that PSC isolations were not contaminated with cancer cells. After filtering the variants, using different pathogenicity scores, ten genes were identified (SERPINB2, CNTNAP4, DENND4B, DPP4, FGFBP2, MIGA2, POLE, SNRNP40, TOP2B, and ZDHHC18) in single samples and confirmed by Sanger sequencing. As a proof of concept, functional analysis using control and SERPINB2 knock-out fibroblasts revealed functional effects on growth, migration, and collagen contraction. In conclusion, PSC DNA exhibit a substantial amount of single nucleotide variants that might have functional effects potentially contributing to tumor aggressiveness.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Genômica , Humanos , Nucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
Clin Transl Med ; 12(6): e851, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35692099

RESUMO

OBJECTIVE: Obesity is driven by modifiable lifestyle factors whose effects may be mediated by epigenetics. Therefore, we investigated lifestyle effects on blood DNA methylation in participants of the LIFE-Adult study, a well-characterised population-based cohort from Germany. RESEARCH DESIGN AND METHODS: Lifestyle scores (LS) based on diet, physical activity, smoking and alcohol intake were calculated in 4107 participants of the LIFE-Adult study. Fifty subjects with an extremely healthy lifestyle and 50 with an extremely unhealthy lifestyle (5th and 95th percentiles LS) were selected for genome-wide DNA methylation analysis in blood samples employing Illumina Infinium® Methylation EPIC BeadChip system technology. RESULTS: Differences in DNA methylation patterns between body mass index groups (<25 vs. >30 kg/m2 ) were rather marginal compared to inter-lifestyle differences (0 vs. 145 differentially methylated positions [DMPs]), which identified 4682 differentially methylated regions (DMRs; false discovery rate [FDR <5%) annotated to 4426 unique genes. A DMR annotated to the glutamine-fructose-6-phosphate transaminase 2 (GFPT2) locus showed the strongest hypomethylation (∼6.9%), and one annotated to glutamate rich 1 (ERICH1) showed the strongest hypermethylation (∼5.4%) in healthy compared to unhealthy lifestyle individuals. Intersection analysis showed that diet, physical activity, smoking and alcohol intake equally contributed to the observed differences, which affected, among others, pathways related to glutamatergic synapses (adj. p < .01) and axon guidance (adj. p < .05). We showed that methylation age correlates with chronological age and waist-to-hip ratio with lower DNA methylation age (DNAmAge) acceleration distances in participants with healthy lifestyles. Finally, two identified top DMPs for the alanyl aminopeptidase (ANPEP) locus also showed the strongest expression quantitative trait methylation in blood. CONCLUSIONS: DNA methylation patterns help discriminate individuals with a healthy versus unhealthy lifestyle, which may mask subtle methylation differences derived from obesity.


Assuntos
Metilação de DNA , Epigênese Genética , Adulto , Metilação de DNA/genética , Epigenômica , Estilo de Vida Saudável , Humanos , Obesidade/genética
4.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053502

RESUMO

Glioblastoma (GBM) is a devastating disease and the most common primary brain malignancy of adults with a median survival barely exceeding one year. Recent findings suggest that the antipsychotic drug pimozide triggers an autophagy-dependent, lysosomal type of cell death in GBM cells with possible implications for GBM therapy. One oncoprotein that is often overactivated in these tumors and associated with a particularly dismal prognosis is Signal Transducer and Activator of Transcription 3 (STAT3). Here, we used isogenic human and murine GBM knockout cell lines, advanced fluorescence microscopy, transcriptomic analysis and FACS-based assessment of cell viability to show that STAT3 has an underappreciated, context-dependent role in drug-induced cell death. Specifically, we demonstrate that depletion of STAT3 significantly enhances cell survival after treatment with Pimozide, suggesting that STAT3 confers a particular vulnerability to GBM. Furthermore, we show that active STAT3 has no major influence on the early steps of the autophagy pathway, but exacerbates drug-induced lysosomal membrane permeabilization (LMP) and release of cathepsins into the cytosol. Collectively, our findings support the concept of exploiting the pro-death functions of autophagy and LMP for GBM therapy and to further determine whether STAT3 can be employed as a treatment predictor for highly apoptosis-resistant, but autophagy-proficient cancers.

5.
Biol Methods Protoc ; 7(1): bpac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087953

RESUMO

The precise and rapid construction of alleles through CRISPR/Cas9-mediated genome engineering renders Drosophila melanogaster a powerful animal system for molecular structure-function analyses and human disease models. Application of the ovoD co-selection method offers expedited generation and enrichment of scarlessly edited alleles without the need for linked transformation markers, which specifically in the case of exon editing can impact allele usability. However, we found that knockin procedures by homology-directed repair (HDR) under ovoD co-selection resulted in low transformation efficiency. This is likely due to repeated rounds of Cas9 cleavage of HDR donor and/or engineered genomic locus DNA, as noted for other CRISPR/Cas9 editing strategies before, impeding the recovery of correctly edited alleles. Here we provide a one-step protocol to improve the generation of scarless alleles by ovoD -co-selection with single-guide RNA (sgRNA) binding site masking. Using this workflow, we constructed human disease alleles for two Drosophila genes, unc-13/CG2999 and armadillo/CG11579. We show and quantify how a known countermeasure, the insertion of silent point mutations into protospacer adjacent motif (PAM) or sgRNA homology regions, can potently suppress unintended sequence modifications during CRISPR/Cas9 genome editing of D. melanogaster under ovoD co-selection. This strongly increased the recovery frequency of disease alleles.

6.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944065

RESUMO

Despite the immense functional relevance of GPR56 (gene ADGRG1) in highly diverse (patho)physiological processes such as tumorigenesis, immune regulation, and brain development, little is known about its exact tissue localization. Here, we validated antibodies for GPR56-specific binding using cells with tagged GPR56 or eliminated ADGRG1 in immunotechniques. Using the most suitable antibody, we then established the human GPR56 tissue expression profile. Overall, ADGRG1 RNA-sequencing data of human tissues and GPR56 protein expression correlate very well. In the adult brain especially, microglia are GPR56-positive. Outside the central nervous system, GPR56 is frequently expressed in cuboidal or highly prismatic secreting epithelia. High ADGRG1 mRNA, present in the thyroid, kidney, and placenta is related to elevated GPR56 in thyrocytes, kidney tubules, and the syncytiotrophoblast, respectively. GPR56 often appears in association with secreted proteins such as pepsinogen A in gastric chief cells and insulin in islet ß-cells. In summary, GPR56 shows a broad, not cell-type restricted expression in humans.


Assuntos
Carcinogênese/genética , Insulina/genética , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Adesão Celular/genética , Celulas Principais Gástricas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Rim/metabolismo , Microglia/metabolismo , Microglia/patologia , Neoplasias/patologia , Pepsinogênio A/biossíntese , Pepsinogênio A/genética , Placenta/metabolismo , Gravidez , RNA-Seq , Glândula Tireoide/metabolismo
7.
Cancer Biol Med ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591417

RESUMO

OBJECTIVE: Cellular heterogeneity is regarded as a major factor affecting treatment response and resistance in malignant melanoma. Recent developments in single-cell sequencing technology have provided deeper insights into these mechanisms. METHODS: Here, we analyzed a BRAFV600E-mutant melanoma cell line by single-cell RNA-seq under various conditions: cells sensitive to BRAF inhibition with BRAF inhibitor vemurafenib and cells resistant to BRAF inhibition with vemurafenib alone or vemurafenib in combination with the MEK1/2 inhibitors cobimetinib or trametinib. Dimensionality reduction by t-distributed stochastic neighbor embedding and self-organizing maps identified distinct trajectories of resistance development clearly separating the 4 treatment conditions in cell and gene state space. RESULTS: Trajectories associated with resistance to single-agent treatment involved cell cycle, extracellular matrix, and de-differentiation programs. In contrast, shifts detected in double-resistant cells primarily affected translation and mitogen-activated protein kinase pathway reactivation, with a small subpopulation showing markers of pluripotency. These findings were validated in pseudotime analyses and RNA velocity measurements. CONCLUSIONS: The single-cell transcriptomic analyses reported here employed a spectrum of bioinformatics methods to identify mechanisms of melanoma resistance to single- and double-agent treatments. This study deepens our understanding of treatment-induced cellular reprogramming and plasticity in melanoma cells and identifies targets of potential relevance to the management of treatment resistance.

8.
Nat Commun ; 11(1): 4243, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843625

RESUMO

Increased extracellular Ca2+ concentrations ([Ca2+]ex) trigger activation of the NLRP3 inflammasome in monocytes through calcium-sensing receptor (CaSR). To prevent extraosseous calcification in vivo, the serum protein fetuin-A stabilizes calcium and phosphate into 70-100 nm-sized colloidal calciprotein particles (CPPs). Here we show that monocytes engulf CPPs via macropinocytosis, and this process is strictly dependent on CaSR signaling triggered by increases in [Ca2+]ex. Enhanced macropinocytosis of CPPs results in increased lysosomal activity, NLRP3 inflammasome activation, and IL-1ß release. Monocytes in the context of rheumatoid arthritis (RA) exhibit increased CPP uptake and IL-1ß release in response to CaSR signaling. CaSR expression in these monocytes and local [Ca2+] in afflicted joints are increased, probably contributing to this enhanced response. We propose that CaSR-mediated NLRP3 inflammasome activation contributes to inflammatory arthritis and systemic inflammation not only in RA, but possibly also in other inflammatory conditions. Inhibition of CaSR-mediated CPP uptake might be a therapeutic approach to treating RA.


Assuntos
Artrite Reumatoide/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Calcinose , Cálcio/metabolismo , Células Cultivadas , Humanos , Inflamação , Interleucina-1beta/metabolismo , Camundongos , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Fosfatos/metabolismo , Pinocitose , Receptores de Detecção de Cálcio/deficiência , Transdução de Sinais , Células THP-1 , alfa-2-Glicoproteína-HS/metabolismo
9.
Thyroid ; 30(10): 1482-1489, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284013

RESUMO

Background: Constitutively activating mutations in the thyrotropin receptor (TSHR) and the guanine nucleotide-binding protein G subunit alpha (GNAS) are the primary cause of hot thyroid nodules (HTNs). The reported prevalence of TSHR and GNAS mutations in HTNs varies. Previous studies show TSHR mutations in 8-82% of HTNs and GNAS mutations in 8-75% of HTNs. With sensitive and comprehensive targeted next-generation sequencing (tNGS), we re-evaluated the prevalence of TSHR and GNAS mutations in HTNs. Methods: Samples from three previous studies found to be TSHR and GNAS mutation negative were selected and re-evaluated using high-resolution melting (HRM) PCR. Remaining mutation negative samples were further reanalyzed by tNGS with a sequencing depth between 3000 × and 10,000 × . Our tNGS panel covered the entire TSHR coding sequence along with mutation hot spots in GNAS. Sequencing reads were aligned to reference and variants were called using Torrent Suite software v5.8. Results: In total, 154 of 182 previously mutation negative HTNs were positive for TSHR or GNAS mutations, resulting in an 85% prevalence of TSHR and GNAS mutations in HTNs, 79% and 6%, respectively. In a subset of 25 HTNs with multiple samples per nodule, and analyzed by tNGS at high sequencing depth, TSHR mutations were detected in 23 (92%) HTNs and 1 GNAS mutation was detected in 1 (4%) HTN, 96% mutation positive HTNs in this subset. Conclusions: Owing to the higher sensitivity of tNGS as compared with denaturing gradient gel electrophoresis and HRM-PCR, TSHR or GNAS mutations could be detected in 85% of HTNs. The detection of TSHR and GNAS mutations occurred in 96% of HTNs in a sample set with multiple samples per nodule analyzed by tNGS. Taken together with the fact that no other driver mutations could be identified by whole exome sequencing, our study strongly supports the hypothesis that TSHR and GNAS mutations are the main somatic mutations leading to HTNs.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação , Receptores da Tireotropina/genética , Análise de Sequência de DNA , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/metabolismo , Proteínas de Transporte/genética , Análise Mutacional de DNA , Nucleotídeos de Guanina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Iodo/metabolismo , Prevalência , Sensibilidade e Especificidade , Software
10.
Cancers (Basel) ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861377

RESUMO

The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78-6.07; p = 4.39 × 10-13), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10-5). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05-1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy.

11.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554283

RESUMO

The transcription factor hypoxia-inducible factor 1 (HIF1) is the crucial regulator of genes that are involved in metabolism under hypoxic conditions, but information regarding the transcriptional activity of HIF1 in normoxic metabolism is limited. Different tumor cells were treated under normoxic and hypoxic conditions with various drugs that affect cellular metabolism. HIF1α was silenced by siRNA in normoxic/hypoxic tumor cells, before RNA sequencing and bioinformatics analyses were performed while using the breast cancer cell line MDA-MB-231 as a model. Differentially expressed genes were further analyzed and validated by qPCR, while the activity of the metabolites was determined by enzyme assays. Under normoxic conditions, HIF1 activity was significantly increased by (i) glutamine metabolism, which was associated with the release of ammonium, and it was decreased by (ii) acetylation via acetyl CoA synthetase (ACSS2) or ATP citrate lyase (ACLY), respectively, and (iii) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, acetylsalicylic acid, ibuprofen, L-ascorbic acid, and citrate each significantly destabilized HIF1α only under normoxia. The results from the deep sequence analyses indicated that, in HIF1-siRNA silenced MDA-MB-231 cells, 231 genes under normoxia and 1384 genes under hypoxia were transcriptionally significant deregulated in a HIF1-dependent manner. Focusing on glycolysis genes, it was confirmed that HIF1 significantly regulated six normoxic and 16 hypoxic glycolysis-associated gene transcripts. However, the results from the targeted metabolome analyses revealed that HIF1 activity affected neither the consumption of glucose nor the release of ammonium or lactate; however, it significantly inhibited the release of the amino acid alanine. This study comprehensively investigated, for the first time, how normoxic HIF1 is stabilized, and it analyzed the possible function of normoxic HIF1 in the transcriptome and metabolic processes of tumor cells in a breast cancer cell model. Furthermore, these data imply that HIF1 compensates for the metabolic outcomes of glutaminolysis and, subsequently, the Warburg effect might be a direct consequence of the altered amino acid metabolism in tumor cells.


Assuntos
Metabolismo Energético , Glutamina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Acetilação , Ácido Ascórbico/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/genética , Neoplasias/patologia , Estabilidade Proteica , RNA Interferente Pequeno/genética
12.
Sci Rep ; 9(1): 12786, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484960

RESUMO

Reliable quantification of miRNA expression by qRT-PCR crucially depends on validated housekeepers for data normalization. Here we present thoroughly tested miRNAs eligible as references in immunological studies utilizing endothelial cells and macrophages, respectively. Endothelial cells (cell line: TIME) and macrophages (cell line: RAW264.7) were treated with various pro- and anti-inflammatory mediators (cytokines, LPS, unsaturated fatty acids) given as either single substances or in combination. Isolated RNA was screened for stably expressed miRNAs by next generation sequencing. Housekeeper candidates were thereafter validated by means of two independent quantification techniques: qRT-PCR for relative quantification and ddPCR for absolute quantification. Both methods consistently confirmed the suitability of let-7g-5p, let-7i-5p, miR-127-3p and miR-151a-5p in cytokine/fatty acid-treated TIME and miR-16-5p, miR-27b-3p, miR-103a-3p and miR-423-3p in LPS/fatty acid-treated RAW264.7, respectively as housekeeping miRNAs. With respect to abundancy and over all expression stability the miRNAs miR-151a-5p (cell line: TIME) as well as miR-27b-3p and miR-103a-3p (cell line: RAW264.7) can be particularly recommended for normalization of qRT-PCR data.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Genes Essenciais , Macrófagos/metabolismo , MicroRNAs/biossíntese , Animais , Células Endoteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , MicroRNAs/genética , Células RAW 264.7
13.
Circ Res ; 121(8): 970-980, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28724745

RESUMO

RATIONALE: Currently, there are no blood-based biomarkers with clinical utility for acute ischemic stroke (IS). MicroRNAs show promise as disease markers because of their cell type-specific expression patterns and stability in peripheral blood. OBJECTIVE: To identify circulating microRNAs associated with acute IS, determine their temporal course up to 90 days post-stroke, and explore their utility as an early diagnostic marker. METHODS AND RESULTS: We used RNA sequencing to study expression changes of circulating microRNAs in a discovery sample of 20 patients with IS and 20 matched healthy control subjects. We further applied quantitative real-time polymerase chain reaction in independent samples for validation (40 patients with IS and 40 matched controls), replication (200 patients with IS, 100 healthy control subjects), and in 72 patients with transient ischemic attacks. Sampling of patient plasma was done immediately upon hospital arrival. We identified, validated, and replicated 3 differentially expressed microRNAs, which were upregulated in patients with IS compared with both healthy control subjects (miR-125a-5p [1.8-fold; P=1.5×10-6], miR-125b-5p [2.5-fold; P=5.6×10-6], and miR-143-3p [4.8-fold; P=7.8×10-9]) and patients with transient ischemic attack (miR-125a-5p: P=0.003; miR-125b-5p: P=0.003; miR-143-3p: P=0.005). Longitudinal analysis of expression levels up to 90 days after stroke revealed a normalization to control levels for miR-125b-5p and miR-143-3p starting at day 2 while miR-125a-5p remained elevated. Levels of all 3 microRNAs depended on platelet numbers in a platelet spike-in experiment but were unaffected by chemical hypoxia in Neuro2a cells and in experimental stroke models. In a random forest classification, miR-125a-5p, miR-125b-5p, and miR-143-3p differentiated between healthy control subjects and patients with IS with an area under the curve of 0.90 (sensitivity: 85.6%; specificity: 76.3%), which was superior to multimodal cranial computed tomography obtained for routine diagnostics (sensitivity: 72.5%) and previously reported biomarkers of acute IS (neuron-specific enolase: area under the curve=0.69; interleukin 6: area under the curve=0.82). CONCLUSIONS: A set of circulating microRNAs (miR-125a-5p, miR-125b-5p, and miR-143-3p) associates with acute IS and might have clinical utility as an early diagnostic marker.


Assuntos
Isquemia Encefálica/sangue , MicroRNAs/sangue , Análise de Sequência de RNA , Acidente Vascular Cerebral/sangue , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/genética , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Marcadores Genéticos , Humanos , Interleucina-6/sangue , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fosfopiruvato Hidratase/sangue , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética , Fatores de Tempo , Tomografia Computadorizada por Raios X
14.
Nat Commun ; 7: 12429, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27539542

RESUMO

Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , RNA Longo não Codificante/metabolismo , RNA Ribossômico/metabolismo , Apoptose , Aterosclerose/patologia , Nucléolo Celular/metabolismo , Proliferação de Células , Cromossomos Humanos Par 9 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Macrófagos/patologia , Músculo Liso Vascular/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA
15.
J Clin Invest ; 126(9): 3383-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27500488

RESUMO

Autonomous thyroid adenomas (ATAs) are a frequent cause of hyperthyroidism. Mutations in the genes encoding the TSH receptor (TSHR) or the Gs protein α subunit (GNAS) are found in approximately 70% of ATAs. The involvement of other genes and the pathogenesis of the remaining cases are presently unknown. Here, we performed whole-exome sequencing in 19 ATAs that were paired with normal DNA samples and identified a recurrent hot-spot mutation (c.1712A>G; p.Gln571Arg) in the enhancer of zeste homolog 1 (EZH1) gene, which codes for a catalytic subunit of the polycomb complex. Targeted screening in an independent cohort confirmed that this mutation occurs with high frequency (27%) in ATAs. EZH1 mutations were strongly associated with known (TSHR, GNAS) or presumed (adenylate cyclase 9 [ADCY9]) alterations in cAMP pathway genes. Furthermore, functional studies revealed that the p.Gln571Arg EZH1 mutation caused increased histone H3 trimethylation and increased proliferation of thyroid cells. In summary, this study revealed that a hot-spot mutation in EZH1 is the second most frequent genetic alteration in ATAs. The association between EZH1 and TSHR mutations suggests a 2-hit model for the pathogenesis of these tumors, whereby constitutive activation of the cAMP pathway and EZH1 mutations cooperate to induce the hyperproliferation of thyroid cells.


Assuntos
Mutação , Complexo Repressor Polycomb 2/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Domínio Catalítico , Diferenciação Celular , Proliferação de Células , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Receptores da Tireotropina/genética , Software , Glândula Tireoide/patologia
16.
Endocrine ; 54(2): 440-447, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27473101

RESUMO

Diagnosis of thyroid by fine needle aspiration is challenging for the "indeterminate" category and can be supported by molecular testing. We set out to identify miRNA markers that could be used in a diagnostic setting to improve the discrimination of mutation-negative indeterminate fine needle aspirations. miRNA high-throughput sequencing was performed for freshly frozen tissue samples of 19 RAS and PAX8/PPARG mutation-negative follicular thyroid carcinomas, and 23 RAS and PAX8/PPARG mutation-negative follicular adenomas. Differentially expressed miRNAs were validated by quantitative polymerase chain reaction in a set of 44 fine needle aspiration samples representing 24 follicular thyroid carcinomas and 20 follicular adenomas. Twenty-six miRNAs characterized by a significant differential expression between follicular thyroid carcinomas and follicular adenomas were identified. Nevertheless, since no single miRNA had satisfactory predictive power, classifiers comprising two differentially expressed miRNAs were designed with the aim to improve the classification. Six two-miRNA classifiers were established and quantitative polymerase chain reaction validated in fine needle aspiration samples. Four out of six classifiers were characterized by a high specificity (≥94 %). The best two-miRNA classifier (miR-484/miR-148b-3p) identified thyroid malignancy with a sensitivity of 89 % and a specificity of 87 %. The high-throughput sequencing allowed the identification of subtle differences in the miRNA expression profiles of follicular thyroid carcinomas and follicular adenomas. While none of the differentially expressed miRNAs could be used as a stand-alone malignancy marker, the validation results for two-miRNA classifiers in an independent set of fine needle aspirations are very promising. The ultimate evaluation of these classifiers for their capability of discriminating mutation-negative indeterminate fine needle aspirations will require the evaluation of a sufficiently large number of fine needle aspirations with histological confirmation.


Assuntos
Adenocarcinoma Folicular/diagnóstico , Adenoma/diagnóstico , MicroRNAs/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Adulto , Biópsia por Agulha Fina , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Sensibilidade e Especificidade , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
17.
Sci Rep ; 5: 14841, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26434764

RESUMO

Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss.


Assuntos
Gordura Intra-Abdominal/metabolismo , Obesidade Mórbida/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Transcriptoma , Redução de Peso , Adulto , Índice de Massa Corporal , Feminino , Derivação Gástrica , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia
18.
Int J Cancer ; 137(12): 2846-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26095926

RESUMO

Stratification of head and neck squamous cell carcinomas (HNSCC) based on HPV16 DNA and RNA status, gene expression patterns, and mutated candidate genes may facilitate patient treatment decision. We characterize head and neck squamous cell carcinomas (HNSCC) with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited patients by gene expression profiling and targeted sequencing of 50 genes. We show that tumors with transcriptionally inactive HPV16 (DNA+ RNA-) are similar to HPV-negative (DNA-) tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). We also find that an immune response-related gene expression cluster is associated with lymph node metastasis, independent of HPV16 status and that disruptive TP53 mutations are associated with lymph node metastasis in HPV16 DNA- tumors. We validate each of these associations in another large data set. Four gene expression clusters which we identify differ moderately but significantly in overall survival. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC.


Assuntos
Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/imunologia , Infecções por Papillomavirus/imunologia , RNA Viral/genética , Proteína Supressora de Tumor p53/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/secundário , Regulação Neoplásica da Expressão Gênica/imunologia , Frequência do Gene , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Imunidade Inata/genética , Metástase Linfática , Mutação , Infecções por Papillomavirus/mortalidade , Infecções por Papillomavirus/patologia , Prognóstico , Modelos de Riscos Proporcionais , RNA Viral/metabolismo , Transcrição Gênica
19.
Mol Cell Endocrinol ; 399: 43-9, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25258301

RESUMO

The inherent diagnostic limitations of thyroid fine needle aspiration (FNA), especially in the "indeterminate" category, can be partially overcome by molecular analyses. We aimed at the identification of miRNAs that could be used to improve the discrimination of indeterminate FNAs. miRNA expression profiling was performed for 17 follicular carcinomas (FTCs) and 8 follicular adenomas (FAs). The microarray results underwent cross-comparison using three additional microarray data sets. Candidate miRNAs were validated by qPCR in an independent set of 32 FTCs and 46 FAs. Sixty-eight differentially expressed miRNAs were identified. Thirteen miRNAs could be confirmed by cross comparison. A two-miRNA-classifier was established improving the diagnostic applicability and resulted in a sensitivity of 82% and a specificity of 49%. We present a classifier that has the potential to be successfully evaluated in cytology material for its capability to discriminate (mutation negative) indeterminate cytologies and thereby improving the pre-surgical diagnostics of thyroid nodules.


Assuntos
Adenocarcinoma Folicular , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Neoplasias da Glândula Tireoide , Adenocarcinoma Folicular/classificação , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Feminino , Humanos , Masculino , Neoplasias da Glândula Tireoide/classificação , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética
20.
Mol Cell Endocrinol ; 393(1-2): 39-45, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24915144

RESUMO

Hot thyroid nodules (HTNs) in children are rare. Their reported malignancy rate is higher than in adults. However molecular data are rare. We present clinical and molecular data for 33 consecutive (29 benign and 4 malignant) HTNs. 17/29 Benign HTNs (59%) harbored somatic TSHR mutations. The most commonly observed mutation was M453T (in 8/29 samples). T632I and D633Y mutations were each detected twice. All other TSHR mutations were each found in one sample, including the new A538T mutation. One NRAS mutation was detected in a benign HTN with a M453T mutation. A PAX8/PPARG rearrangement was found in one malignant HTN. A T632I mutation was detected in one hot papillary thyroid carcinoma. The percentage of TSHR mutation positive HTNs in children and adolescents is within the range observed in adults. Contrary to adults, the M453T mutation is the predominant TSHR mutation in HTNs of children and adolescents. The increased malignancy rate of HTNs of children does not appear to be associated with RAS, BRAF, PAX8/PPARG and RET/PTC mutations.


Assuntos
Mutação/genética , Nódulo da Glândula Tireoide/genética , Adolescente , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Humanos , Masculino , Nódulo da Glândula Tireoide/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA