Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(1): 34-45, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497488

RESUMO

IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.


Assuntos
Artrogripose/genética , Mutação/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ceratose/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
2.
Am J Hum Genet ; 93(6): 1118-25, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24268655

RESUMO

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.


Assuntos
Otopatias/genética , Orelha/anormalidades , Genes Dominantes , Genes Recessivos , Mutação , Fenótipo , Sequência de Aminoácidos , Substituição de Aminoácidos , Análise Mutacional de DNA , Otopatias/diagnóstico , Otopatias/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Transdução de Sinais
3.
Nat Genet ; 45(1): 83-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222957

RESUMO

Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.


Assuntos
Agenesia do Corpo Caloso/genética , Antígenos de Neoplasias/genética , Autofagia/genética , Catarata/genética , Genes Recessivos , Mutação , Proteínas Relacionadas à Autofagia , Biópsia , Consanguinidade , Exoma , Família , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal , Lisossomos/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Proteínas/metabolismo , Proteínas de Transporte Vesicular
4.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155368

RESUMO

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Assuntos
Intestino Delgado/anormalidades , Mutação de Sentido Incorreto , Receptores Virais/genética , Síndrome do Intestino Curto/genética , Adolescente , Adulto , Animais , Células CHO , Criança , Pré-Escolar , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Intestino Delgado/metabolismo , Masculino , Morfogênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Virais/metabolismo , Síndrome do Intestino Curto/embriologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/patologia , Transfecção , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Eur J Hum Genet ; 19(7): 757-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21326280

RESUMO

Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.


Assuntos
Acrocefalossindactilia/complicações , Acrocefalossindactilia/genética , Craniossinostoses/complicações , Craniossinostoses/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Proteína Gli3 com Dedos de Zinco
6.
Am J Med Genet B Neuropsychiatr Genet ; 150B(6): 817-26, 2009 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-19086034

RESUMO

We have recently reported the identification of a de novo balanced translocation t(5;18)(q33.1;q12.1) in a boy with autism. Here we discuss the identification of the breakpoints on chromosomes 5 and 18, and subsequent genomic and candidate gene analyses. The 18q breakpoint lies between desmocollin genes DSC1 and DSC2. The chromosome 5 breakpoint lies at the 3' end of the SH3TC2 gene and distal to beta-adrenergic receptor gene ADRB2 and serotonin receptor gene HTR4. We hypothesized that the transcription of one (or more) of these genes is affected by the translocation by position effect. Looking at allele-specific gene expression for the genes at the 5q locus, we were able to determine that ADRB2 is expressed from both the normal and derivative alleles. Due to the lack of expression in available tissues or lack of available informative transcribed SNPs, we were unable to exclude the involvement of SH3TC2 and HTR4 due to position effect. However, we determined that both DSC1 and DSC2 are only transcribed from the normal chromosome 18 in lymphocytes from the proband. This monoallelic expression of DSC2 may put the patient at risk for arrythmogenic right ventricular cardiomyopathy. Desmocollin genes encode cell-adhesion molecules, and are also highly expressed in brain regions, and thus may also be important for normal neuronal functioning. While a role for SH3TC2, ADRB2, and HTR4 as putative candidate genes for autism cannot be discounted, a role for the desmocollin genes at the 18q breakpoint should also be considered.


Assuntos
Transtorno Autístico/genética , Quebra Cromossômica , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 5/genética , Translocação Genética , Sequência de Bases , Análise Mutacional de DNA , Desmocolinas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dados de Sequência Molecular , Família Multigênica , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Receptores Adrenérgicos beta 2/genética , Receptores de Serotonina/genética
7.
Eur J Med Genet ; 49(4): 338-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16829355

RESUMO

Chromosomal deletions on chromosome 7p are associated with Greig cephalopolysyndactyly syndrome (GCPS, OMIM 175700) a syndrome affecting the development of the skull, face, and limbs. We have compared data from molecular cytogenetic and genetic analyses with clinical symptoms from five previously published GCPS deletion patients, including a pair of monozygotic twins. The genomic DNA of the probands and their parents, as well as the DNA from monoallelic cell lines of two patients, was analyzed using microsatellite markers. In some cases (e.g. where the microsatellite studies were uninformative) we also used fluorescence in situ hybridization (FISH) with bacterial artificial chromosomes (BAC) probes. The fine mapping results of the deletions and genomic data from chromosome 7, were compared to the clinical symptoms. Common breakpoint sequences or mutation hotspots were not observed. Mutation screening for PGAM2, which is responsible for a form of myopathy with recessive inheritance, was performed in all patients. Loss of heterozygosity for known genes with dominant inheritance, such as the glucokinase gene (GCK), which, when mutated or haploinsufficient, is responsible for maturity-onset diabetes of the young, type II (MODY2, OMIM 125851), was identified and included in a genetic counseling of the patients' families.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 7 , Anormalidades Craniofaciais/genética , Deformidades Congênitas dos Membros/genética , Técnicas Genéticas , Genoma , Glucoquinase/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Repetições de Microssatélites , Proteínas do Tecido Nervoso/genética , Síndrome , Proteína Gli3 com Dedos de Zinco
8.
J Hum Genet ; 51(2): 141-146, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16365682

RESUMO

We report on a 12-year-old female patient with mild dysmorphic signs, including bilateral epicanthal folds, low-set dysplastic ears, a short nose with anteverted nostrils, conically shaped fingers, generalised increase of subcutaneous fat, multiple fine venous teleangiectasia on her back, mild pectus carinatum, and a general muscular hypotonia. Cytogenetic analysis and fluorescence in situ hybridisation (FISH) studies using region-specific BAC and YAC clones indicated a de novo interstitial deletion of the long arm of chromosome 5, resulting in monosomy 5q21.1-q23.1. Molecular analysis of polymorphic markers helped to narrow down the breakpoints and demonstrated that the derivative chromosome 5 is of paternal origin. By using the same panel of polymorphic markers, a reinvestigation of a similar, already published, 5q deletion case [Raedle et al. (2001) Am J Gastroenterol 96:3016-3020] was performed, allowing a more detailed genotype-phenotype correlation. Phenotypic classification was also carried out. Several known genes, including APC and MCC, were found to map to the common deleted genomic segment. Genetic counselling based on the molecular analysis data was performed for the index family.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Deficiências do Desenvolvimento/genética , Genes APC , Fenótipo , Criança , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos Artificiais de Levedura , Análise Citogenética , Feminino , Marcadores Genéticos/genética , Humanos , Hibridização in Situ Fluorescente , Linhagem
9.
J Pediatr Surg ; 40(11): e47-50, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16291141

RESUMO

Williams-Beuren syndrome is a genetic disorder caused by a heterozygous deletion at 7q11.23. The present report describes a female patient with Williams-Beuren syndrome combined with caudal regression syndrome and two forms of coagulopathy. Besides the typical developmental abnormalities such as mental and growth retardation, a distinctive facial appearance, and cardiovascular anomalies, our patient showed fusion of fourth and fifth lumbar vertebra and a sacrococcygeal agenesis. Blood coagulation tests revealed a deficiency of coagulation factor XI and XII. Magnetic resonance imaging angiography showed multiple vascular stenoses mainly in the abdominal aorta and its major branches as a consequence of the insufficient elastin gene. Previous reports identified a deletion of HLXB9 as a possible genetic cause of the caudal regression syndrome, which could not be identified in the present case. This unusual combination of the above-mentioned genetic disorders has not been published so far.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Sacro/anormalidades , Síndrome de Williams/complicações , Adulto , Estenose da Valva Aórtica , Transtornos da Coagulação Sanguínea/genética , Deficiência do Fator XI/genética , Deficiência do Fator XII/genética , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Síndrome de Williams/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA