Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961697

RESUMO

Tumor-associated macrophages (TAMs) are frequently and simplistically categorized as immunosuppressive, and one molecule prominently used to highlight their so-called 'M2' state is the surface protein CD206. However, direct evidence of the impact of macrophages remains impaired by the lack of sufficiently penetrant and specific tools to manipulate them in vivo. We thus made a novel conditional CD206 knock-in mouse to specifically visualize and/or deplete these TAMs. Early depletion of CD206+ macrophages and monocytes (here, 'MonoMacs') strikingly led to an indirect loss of a key anti-tumor network of NK cells, conventional type I dendritic cells (cDC1) and CD8 T cells. Among myeloid cells, we found that the CD206+ TAMs are the primary producers of CXCL9, the well-established chemoattractant for CXCR3-expressing NK and CD8 T cells. In contrast, a population of stress-responsive TAMs ("Hypoxic" or Spp1+) and immature monocytes, which remain following depletion, expressed vastly diminished levels of CXCL9. We confirmed that the missing NK and CD8 T cells are the primary producers of the cDC1-attracting chemokine Xcl1 and cDC1 growth factor Flt3l. Consistent with the loss of this critical network, CD206+ TAM depletion decreased tumor control in mice. Likewise, in humans, the CD206+ MonoMac signature correlated robustly with stimulatory cDC1 signature genes. Together, these findings negate the classification of CD206+ macrophages as immunosuppressive and instead illuminate the role of this majority of TAMs in organizing a critical tumor-reactive archetype of immunity.

2.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808790

RESUMO

Antitumor immunity is driven by CD8 T cells, yet we lack signatures for the exceptional effectors in tumors, amongst the vast majority of CD8 T cells undergoing exhaustion. By leveraging the measurement of a canonical T cell activation protein (CD69) together with its RNA (Cd69), we found a larger classifier for TCR stimulation-driven effector states in vitro and in vivo. This revealed exceptional 'star' effectors-highly functional cells distinguished amidst progenitor and terminally exhausted cells. Although rare in growing mouse and human tumors, they are prominent in mice during T cell-mediated tumor clearance, where they engage with tumor antigen and are superior in tumor cell killing. Employing multimodal CITE-Seq allowed de novo identification of similar rare effectors amidst T cell populations in human cancer. The identification of rare and exceptional immune states provides rational avenues for enhancement of antitumor immunity.

3.
Front Immunol ; 14: 1167241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731497

RESUMO

In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery.


Assuntos
Tempestades Ciclônicas , Algoritmos , Benchmarking , Análise por Conglomerados , Tecnologia
4.
Nature ; 621(7977): 179-187, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648857

RESUMO

Tissue resident memory CD8+ T (TRM) cells offer rapid and long-term protection at sites of reinfection1. Tumour-infiltrating lymphocytes with characteristics of TRM cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses2,3. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting TRM cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8+ T cell populations. We found that memory CD8+ T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where TRM cells interface with dietary cholesterol and maintain a heightened state of activation4, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of TRM cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8+ T cell formation in the context of acute infections and enhance antitumour immunity.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Respiração Celular , Colesterol/metabolismo , Colesterol/farmacologia , Memória Imunológica , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metabolômica , Ácido Mevalônico/metabolismo , Neoplasias/imunologia , Ubiquinona/metabolismo , Viroses/imunologia , Vírus/imunologia , Mitocôndrias/metabolismo
5.
Sci Transl Med ; 15(711): eadd9990, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647386

RESUMO

Myeloid cells in the tumor microenvironment (TME) can exist in immunosuppressive and immunostimulatory states that impede or promote antitumor immunity, respectively. Blocking suppressive myeloid cells or increasing stimulatory cells to enhance antitumor immune responses is an area of interest for therapeutic intervention. Triggering receptor expressed on myeloid cells-1 (TREM1) is a proinflammatory receptor that amplifies immune responses. TREM1 is expressed on neutrophils, subsets of monocytes and tissue macrophages, and suppressive myeloid populations in the TME, including tumor-associated neutrophils, monocytes, and tumor-associated macrophages. Depletion or inhibition of immunosuppressive myeloid cells, or stimulation by TREM1-mediated inflammatory signaling, could be used to promote an immunostimulatory TME. We developed PY159, an afucosylated humanized anti-TREM1 monoclonal antibody with enhanced FcγR binding. PY159 is a TREM1 agonist that induces signaling, leading to up-regulation of costimulatory molecules on monocytes and macrophages, production of proinflammatory cytokines and chemokines, and enhancement of T cell activation in vitro. An antibody against mouse TREM1, PY159m, promoted antitumor efficacy in syngeneic mouse tumor models. These results suggest that PY159-mediated agonism of TREM1 on tumoral myeloid cells can promote a proinflammatory TME and offer a promising strategy for immunotherapy.


Assuntos
Monócitos , Células Mieloides , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Imunossupressores , Macrófagos , Receptor Gatilho 1 Expresso em Células Mieloides
6.
Cell Stem Cell ; 30(6): 885-903.e10, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267918

RESUMO

Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. However, comprehensive single-cell-based characterization covering this coordination is lacking. Here, we captured transcriptional states of single cells over space and time during skin wound closure, revealing choreographed gene-expression profiles. We identified shared space-time patterns of cellular and gene program enrichment, which we call multicellular "movements" spanning multiple cell types. We validated some of the discovered space-time movements using large-volume imaging of cleared wounds and demonstrated the value of this analysis to predict "sender" and "receiver" gene programs in macrophages and fibroblasts. Finally, we tested the hypothesis that tumors are like "wounds that never heal" and found conserved wound healing movements in mouse melanoma and colorectal tumor models, as well as human tumor samples, revealing fundamental multicellular units of tissue biology for integrative studies.


Assuntos
Neoplasias , Cicatrização , Camundongos , Animais , Humanos , Cicatrização/genética , Pele/patologia , Neoplasias/patologia , Macrófagos/metabolismo , Fibroblastos/fisiologia , Células Estromais
7.
Nat Rev Cancer ; 23(7): 491-505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277485

RESUMO

Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
Cell Rep ; 42(6): 112582, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261951

RESUMO

Pre-metastatic niche formation is a critical step during the metastatic spread of cancer. One way by which primary tumors prime host cells at future metastatic sites is through the shedding of tumor-derived microparticles as a consequence of vascular sheer flow. However, it remains unclear how the uptake of such particles by resident immune cells affects their phenotype and function. Here, we show that ingestion of tumor-derived microparticles by macrophages induces a rapid metabolic and phenotypic switch that is characterized by enhanced mitochondrial mass and function, increased oxidative phosphorylation, and upregulation of adhesion molecules, resulting in reduced motility in the early metastatic lung. This reprogramming event is dependent on signaling through the mTORC1, but not the mTORC2, pathway and is induced by uptake of tumor-derived microparticles. Together, these data support a mechanism by which uptake of tumor-derived microparticles induces reprogramming of macrophages to shape their fate and function in the early metastatic lung.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Macrófagos/patologia , Pulmão/patologia , Neoplasias/patologia , Transdução de Sinais , Transporte Biológico , Neoplasias Pulmonares/patologia
9.
bioRxiv ; 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945648

RESUMO

In the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.

10.
Cell ; 186(6): 1127-1143.e18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931243

RESUMO

CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Animais , Camundongos , Linfonodos , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia/métodos , Microambiente Tumoral
11.
Cancer Res ; 83(9): 1543-1557, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36847613

RESUMO

α-Fetoprotein (AFP) is expressed by stem-like and poor outcome hepatocellular cancer tumors and is a clinical tumor biomarker. AFP has been demonstrated to inhibit dendritic cell (DC) differentiation and maturation and to block oxidative phosphorylation. To identify the critical metabolic pathways leading to human DC functional suppression, here, we used two recently described single-cell profiling methods, scMEP (single-cell metabolic profiling) and SCENITH (single-cell energetic metabolism by profiling translation inhibition). Glycolytic capacity and glucose dependence of DCs were significantly increased by tumor-derived, but not normal cord blood-derived, AFP, leading to increased glucose uptake and lactate secretion. Key molecules in the electron transport chain in particular were regulated by tumor-derived AFP. These metabolic changes occurred at mRNA and protein levels, with negative impact on DC stimulatory capacity. Tumor-derived AFP bound significantly more polyunsaturated fatty acids (PUFA) than cord blood-derived AFP. PUFAs bound to AFP increased metabolic skewing and promoted DC functional suppression. PUFAs inhibited DC differentiation in vitro, and ω-6 PUFAs conferred potent immunoregulation when bound to tumor-derived AFP. Together, these findings provide mechanistic insights into how AFP antagonizes the innate immune response to limit antitumor immunity. SIGNIFICANCE: α-Fetoprotein (AFP) is a secreted tumor protein and biomarker with impact on immunity. Fatty acid-bound AFP promotes immune suppression by skewing human dendritic cell metabolism toward glycolysis and reduced immune stimulation.


Assuntos
Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas
12.
PLoS One ; 17(8): e0272857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976946

RESUMO

Effective immune responses depend on efficient antigen uptake in the periphery, transport of those antigens to, and presentation in draining lymph nodes (LNs). These processes have been studied intensively using stable fluorescent proteins (FPs) as model antigens. To date, ZsGreen is the only FP that can be tracked efficiently towards LNs, hence, it is difficult to compare studies using alternated tracking proteins. Here, we systematically compared six different FPs. We included ZsGreen, ZsYellow, DsRed, AsRed, mCherry, and mRFP based on sequence homology and/or origin species, and generated FP-expressing tumor cell lines. Stability of fluorescent signal was assessed in vitro over time, across different pH environments, and in vivo through FP antigen uptake and transfer to immune cells isolated from tumors and tumor-draining LNs. ZsGreen could be detected in high percentages of all analyzed tumor-infiltrating immune cells, with highest amounts in tumor-associated macrophages (TAMs) and type 2 conventional dendritic cells (cDC2s). ZsYellow, AsRed, and DsRed followed a similar pattern, but percentages of FP-containing immune cells in the tumor were lower than for ZsGreen. Strikingly, mRFP and mCherry demonstrated a 'non-canonical' antigen uptake pattern where percentages of FP-positive tumor-infiltrating immune cells were highest for cDC1s not TAMs and cDC2s despite comparable stabilities and localization of all FPs. Analysis of antigen-containing cells in the LN was hindered by intracellular degradation of FPs. Only ZsGreen could be efficiently tracked to the LN, though some signal was measurable for ZsYellow and DsRed. In summary, we find that detection of antigen uptake and distribution is subject to variabilities related to fluorophore nature. Future experiments need to consider that these processes might be impacted by protein expression, stability, or other unknown factors. Thus, our data sheds light on potential under-appreciated mechanisms regulating antigen transfer and highlights potential uses and necessary caveats to interpretation based on FP use.


Assuntos
Antígenos de Neoplasias , Células Dendríticas , Antígenos de Neoplasias/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Linfonodos
13.
Am J Respir Crit Care Med ; 206(8): 961-972, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649173

RESUMO

Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.


Assuntos
COVID-19 , Doenças Vasculares , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão , Inibidor 1 de Ativador de Plasminogênio/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Cell Rep ; 39(8): 110865, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613577

RESUMO

Tissue-resident macrophages adapt to local signals within tissues to acquire specific functions. Neoplasia transforms the tissue, raising the question as to how the environmental perturbations contribute to tumor-associated macrophage (TAM) identity and functions. Combining single-cell RNA sequencing (scRNA-seq) with spatial localization of distinct TAM subsets by imaging, we discover that TAM transcriptomic programs follow two main differentiation paths according to their localization in the stroma or in the neoplastic epithelium of the mammary duct. Furthermore, this diversity is exclusively detected in a spontaneous tumor model and tracks the different tissue territories as well as the type of tumor lesion. These TAM subsets harbor distinct capacity to activate CD8+ T cells and phagocyte tumor cells, supporting that specific tumor regions, rather than defined activation states, are the major drivers of TAM plasticity and heterogeneity. The distinctions created here provide a framework to design cancer treatment targeting specific TAM niches.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Macrófagos/patologia , Transcriptoma/genética
15.
Cancer Cell ; 40(6): 624-638.e9, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35623342

RESUMO

T cell exhaustion is a major impediment to antitumor immunity. However, it remains elusive how other immune cells in the tumor microenvironment (TME) contribute to this dysfunctional state. Here, we show that the biology of tumor-associated macrophages (TAMs) and exhausted T cells (Tex) in the TME is extensively linked. We demonstrate that in vivo depletion of TAMs reduces exhaustion programs in tumor-infiltrating CD8+ T cells and reinvigorates their effector potential. Reciprocally, transcriptional and epigenetic profiling reveals that Tex express factors that actively recruit monocytes to the TME and shape their differentiation. Using lattice light sheet microscopy, we show that TAM and CD8+ T cells engage in unique, long-lasting, antigen-specific synaptic interactions that fail to activate T cells but prime them for exhaustion, which is then accelerated in hypoxic conditions. Spatially resolved sequencing supports a spatiotemporal self-enforcing positive feedback circuit that is aligned to protect rather than destroy a tumor.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Diferenciação Celular , Humanos , Macrófagos , Neoplasias/genética , Microambiente Tumoral
16.
Cancer Immunol Res ; 10(6): 698-712, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35413104

RESUMO

Bispecific T-cell engager (BiTE) molecules are biologic T cell-directing immunotherapies. Blinatumomab is approved for treatment of B-cell malignancies, but BiTE molecule development in solid tumors has been more challenging. Here, we employed intravital imaging to characterize exposure and pharmacodynamic response of an anti-muCD3/anti-huEGFRvIII mouse surrogate BiTE molecule in EGFR variant III (EGFRvIII)-positive breast tumors implanted within immunocompetent mice. Our study revealed heterogeneous temporal and spatial dynamics of BiTE molecule extravasation into solid tumors, highlighting physical barriers to BiTE molecule function. We also discovered that high, homogeneous EGFRvIII expression on cancer cells was necessary for a BiTE molecule to efficiently clear tumors. In addition, we found that resident tumor-infiltrating lymphocytes (TIL) were sufficient for optimal tumor killing only at high BiTE molecule dosage, whereas inclusion of peripheral T-cell recruitment was synergistic at moderate to low dosages. We report that deletion of stimulatory conventional type I DCs (cDC1) diminished BiTE molecule-induced T-cell activation and tumor clearance, suggesting that in situ antigen-presenting cell (APC) engagements modulate the extent of BiTE molecule efficacy. In summary, our work identified multiple requirements for optimal BiTE molecule efficacy in solid tumors, providing insights that could be harnessed for solid cancer immunotherapy development.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linfócitos B , Imunoterapia/métodos , Ativação Linfocitária , Camundongos , Neoplasias/patologia , Linfócitos T
17.
Cancer Immunol Res ; 10(4): 403-419, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181780

RESUMO

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts to define bona fide populations and determine their connections to T-cell function and their relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of several mouse and human tumors and found that monocyte-macrophage diversity is characterized by a combination of conserved lineage states as well as transcriptional programs accessed along the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a framework for critically different immune states.


Assuntos
Neoplasias Renais , Monócitos , Animais , Macrófagos , Camundongos , Fenótipo , Microambiente Tumoral
18.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963056

RESUMO

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Assuntos
Censos , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Análise por Conglomerados , Estudos de Coortes , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/patologia , RNA-Seq/métodos , São Francisco , Universidades
19.
Gastroenterology ; 162(2): 590-603.e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34627860

RESUMO

BACKGROUND AND AIMS: Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems. METHODS: We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments. RESULTS: We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity. CONCLUSIONS: MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development.


Assuntos
Autofagia/imunologia , Azetidinas/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/imunologia , Mefloquina/farmacologia , Neoplasias Pancreáticas/imunologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Hidroxicloroquina/farmacologia , Imunoterapia , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/imunologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Macrófagos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/imunologia , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/imunologia , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos
20.
Sci Rep ; 11(1): 23690, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880292

RESUMO

Although surgery for early-stage lung cancer offers the best chance of cure, recurrence still occurs between 30 and 50% of the time. Why patients frequently recur after complete resection of early-stage lung cancer remains unclear. Using a large cohort of stage I lung adenocarcinoma patients, distinct genetic, genomic, epigenetic, and immunologic profiles of recurrent tumors were analyzed using a novel recurrence classifier. To characterize the tumor immune microenvironment of recurrent stage I tumors, unique tumor-infiltrating immune population markers were identified using single cell RNA-seq on a separate cohort of patients undergoing stage I lung adenocarcinoma resection and applied to a large study cohort using digital cytometry. Recurrent stage I lung adenocarcinomas demonstrated higher mutation and lower methylation burden than non-recurrent tumors, as well as widespread activation of known cancer and cell cycle pathways. Simultaneously, recurrent tumors displayed downregulation of immune response pathways including antigen presentation and Th1/Th2 activation. Recurrent tumors were depleted in adaptive immune populations, and depletion of adaptive immune populations and low cytolytic activity were prognostic of stage I recurrence. Genomic instability and impaired adaptive immune responses are key features of stage I lung adenocarcinoma immunosurveillance escape and recurrence after surgery.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Biomarcadores Tumorais , Adenocarcinoma de Pulmão/diagnóstico , Biologia Computacional/métodos , Suscetibilidade a Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Variação Genética , Humanos , Masculino , Mutação , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA