Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 25(23): 7229-7242, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515454

RESUMO

PURPOSE: The microenvironment of metastatic breast cancer is incompletely characterized, despite prior evidence that it plays a key role in the biology of metastasis. A major component of the tumor stroma is the carcinoma-associated fibroblast (CAF), which has been shown to communicate with other stromal and cancer cells to create a protumorigenic milieu. Our study was designed to characterize human CAFs from different metastatic sites. EXPERIMENTAL DESIGN: We collected eight carcinoma-associated fibroblasts (mCAFs) from different metastatic sites and compared them with CAFs from primary tumors (pCAFs) and with normal breast fibroblasts (NFs). Molecular profiles and effects on breast cancer cell growth, on response to doxorubicin and on T-cell proliferation were compared. RESULTS: We observed marked differences in mCAFs compared with pCAFs and NFs with respect to in vitro proliferation and effects on breast cancer cell migration, spheroid growth, invasion, response to doxorubicin, and in vivo tumor growth. We found marked transcriptomic differences between mCAFs and pCAFs, including increased expression of IFN-related genes and IGF2 in the former. Cluster analysis revealed two groups of mCAFs, with the liver mCAFs clustering together, with increased PDGFA expression. Treatment with an antibody against insulin-like growth factors (BI836845) inhibited growth of mixed mCAF-tumor cell xenografts in vivo. Also, mCAFs had a suppressive effect on T-cell proliferation. CONCLUSIONS: This is the first comparative analysis of a set of CAFs from metastatic sites in breast cancer. It revealed a marked protumorigenic effect in these mCAFs, which occurs in part through increased expression of IGF2.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Fator de Crescimento Insulin-Like II/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transcriptoma , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Res ; 17(12): 2492-2507, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537618

RESUMO

The major obstacle in successfully treating triple-negative breast cancer (TNBC) is resistance to cytotoxic chemotherapy, the mainstay of treatment in this disease. Previous preclinical models of chemoresistance in TNBC have suffered from a lack of clinical relevance. Using a single high dose chemotherapy treatment, we developed a novel MDA-MB-436 cell-based model of chemoresistance characterized by a unique and complex morphologic phenotype, which consists of polyploid giant cancer cells giving rise to neuron-like mononuclear daughter cells filled with smaller but functional mitochondria and numerous lipid droplets. This resistant phenotype is associated with metabolic reprogramming with a shift to a greater dependence on fatty acids and oxidative phosphorylation. We validated both the molecular and histologic features of this model in a clinical cohort of primary chemoresistant TNBCs and identified several metabolic vulnerabilities including a dependence on PLIN4, a perilipin coating the observed lipid droplets, expressed both in the TNBC-resistant cells and clinical chemoresistant tumors treated with neoadjuvant doxorubicin-based chemotherapy. These findings thus reveal a novel mechanism of chemotherapy resistance that has therapeutic implications in the treatment of drug-resistant cancer. IMPLICATIONS: These findings underlie the importance of a novel morphologic-metabolic phenotype associated with chemotherapy resistance in TNBC, and bring to light novel therapeutic targets resulting from vulnerabilities in this phenotype, including the expression of PLIN4 essential for stabilizing lipid droplets in resistant cells.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perilipina-4/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Front Oncol ; 9: 698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448226

RESUMO

Trastuzumab, has played a major role in improving treatment outcomes in HER-2 positive gastric cancer. However, once there is disease progression there is a paucity of evidence for second line therapy. Patient-derived xenografts (PDXs) in combination with liquid biopsies can help guide individual therapeutic decisions and have now started to be studied. In the present case we established a PDX model from a metastatic HER-2+ gastric cancer patient and after the first engraftment passage we performed a mouse clinical trial to test T-DM1 as an alternative therapy for the patient. The PDX tumor response served as a guide to administer T-DM1 therapy to the patient who responded to treatment before relapsing 6 months later. Throughout out the clinical follow up of the patient, ctDNA levels of HER-2 copy number and a PIK3CA mutation were monitored and we found their correlation with drug response and disease progression to outperform that of CEA levels. This study highlights the utility of applying precision medicine tools combining PDX models to guide therapy with circulating tumor DNA (ctDNA) to monitor treatment response and disease progression.

4.
J Immunol ; 183(12): 7752-60, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933867

RESUMO

Previous cancer vaccination approaches have shown some efficiency in generating measurable immune responses, but they have rarely led to tumor regression. It is therefore possible that tumors emerge with the capacity to down-regulate immune counterparts, through the local production of immunosuppressive molecules, such as IDO. Although it is known that IDO exerts suppressive effects on T cell functions, the mechanisms of IDO regulation in tumor cells remain to be characterized. Here, we demonstrate that activated T cells can induce functional IDO expression in breast and kidney tumor cell lines, and that this is partly attributable to IFN-gamma. Moreover, we found that IL-13, a Th2 cytokine, has a negative modulatory effect on IDO expression. Furthermore, we report IDO expression in the majority of breast and kidney carcinoma samples, with infiltration of activated Th1-polarized T cells in human tumors. These findings demonstrate complex control of immune activity within tumors. Future immune therapeutic interventions should thus include strategies to counteract these negative mechanisms.


Assuntos
Neoplasias da Mama/imunologia , Carcinoma de Células Renais/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Ativação Linfocitária/imunologia , Células Th1/imunologia , Células Th2/imunologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Técnicas de Cocultura , Humanos , Imunofenotipagem , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Interferon gama/metabolismo , Interferon gama/fisiologia , Ativação Linfocitária/genética , Linfócitos do Interstício Tumoral/enzimologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Células Th1/enzimologia , Células Th1/metabolismo , Células Th1/patologia , Células Th2/enzimologia , Células Th2/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA