Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JDR Clin Trans Res ; 3(1): 35-46, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29276776

RESUMO

Chédiak-Higashi syndrome (CHS), a rare autosomal recessive disorder caused by mutations in the lysosomal trafficking regulator gene (LYST), is associated with aggressive periodontitis. It is suggested that LYST mutations affect the toll-like receptor (TLR)-mediated immunoinflammatory response, leading to frequent infections. This study sought to determine the periodontal status of patients with classic (severe) and atypical (milder) forms of CHS and the immunoregulatory functions of gingival fibroblasts in CHS patients. In contrast to aged-matched healthy controls, atypical (n = 4) and classic (n = 3) CHS patients presented with mild chronic periodontitis with no evidence of gingival ulceration, severe tooth mobility, or premature exfoliation of teeth. As a standard of care, all classic CHS patients had undergone bone marrow transplantation (BMT). Primary gingival fibroblasts obtained from atypical and BMT classic CHS patients displayed higher protein expression of TLR-2 (1.81-fold and 1.56-fold, respectively) and decreased expression of TLR-4 (-2.5-fold and -3.85-fold, respectively) at baseline when compared with healthy control gingival fibroblasts. When challenged with whole bacterial extract of Fusobacterium nucleatum, both atypical and classic CHS gingival fibroblasts failed to up-regulate TLR-2 and TLR-4 expression when compared with their respective untreated groups and control cells. Cytokine multiplex analysis following F. nucleatum challenge showed that atypical CHS gingival fibroblasts featured significantly increased cytokine expression (interleukin [IL]-2, IL-4, IL-5, IL-6, IL-10, IL-12, interferon-γ, tumor necrosis factor-α), whereas classic CHS cells featured similar/decreased cytokine expression when compared with treated control cells. Collectively, these results suggest that LYST mutations in CHS patients affect TLR-2 and TLR-4 expression/function, leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients. Furthermore, our results suggest that atypical CHS patients and classic CHS patients who undergo BMT early in life are less susceptible to aggressive periodontitis and that hematopoietic cells play a critical role in mitigating the risk of aggressive periodontitis in CHS. Knowledge Transfer Statement: Results from this study can be used to create awareness among clinicians and researchers that not all CHS patients exhibit historically reported aggressive periodontitis, especially if they have atypical CHS disease or have received bone marrow transplantation. LYST mutations in CHS patients may affect TLR-2 and TLR-4 expression/function leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients.

2.
Cell Death Differ ; 23(6): 1086-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26768664

RESUMO

Homeostasis requires the immunologically silent clearance of apoptotic cells before they become pro-inflammatory necrotic cells. CD300f (CLM-1) is a phosphatidylserine receptor known to positively regulate efferocytosis by macrophages, and CD300f gene-deficient mice are predisposed to develop a lupus-like disease. Here we show that, in contrast to CD300f function in macrophages, its expression inhibits efferocytosis by DC, and its deficiency leads to enhanced antigen processing and T-cell priming by these DC. The consequences are the expansion of memory T cells and increased ANA levels in aged CD300f-deficient mice, which predispose CD300f-deficient mice to develop an overt autoimmune disease when exposed to an overload of apoptotic cells, or an exacerbated autoimmunity when combined with FcγRIIB deficiency. Thus, our data demonstrates that CD300f helps to maintain immune homeostasis by promoting macrophage clearance of self-antigens, while conversely inhibiting DC uptake and presentation of self-antigens.


Assuntos
Receptores Imunológicos/genética , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose , Autoanticorpos/metabolismo , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Hialuronatos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/deficiência , Receptores de IgG/genética , Receptores Imunológicos/deficiência , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Terpenos/farmacologia , Timócitos/citologia , Timócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA