Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1258369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933266

RESUMO

Autoantigen-specific immunotherapy using peptides offers a more targeted approach to treat autoimmune diseases, but clinical implementation has been challenging. We previously showed that multivalent delivery of peptides as soluble antigen arrays (SAgAs) efficiently protects against spontaneous autoimmune diabetes in the non-obese diabetic (NOD) mouse model. Here, we compared the efficacy, safety, and mechanisms of action of SAgAs versus free peptides. SAgAs, but not their corresponding free peptides at equivalent doses, efficiently prevented the development of diabetes. SAgAs increased the frequency of regulatory T cells among peptide-specific T cells or induce their anergy/exhaustion or deletion, depending on the type of SAgA used (hydrolysable (hSAgA) and non-hydrolysable 'click' SAgA (cSAgA)) and duration of treatment, whereas their corresponding free peptides induced a more effector phenotype following delayed clonal expansion. Over time, the peptides induced an IgE-independent anaphylactic reaction, the incidence of which was significantly delayed when peptides were in SAgA form rather than in free form. Moreover, the N-terminal modification of peptides with aminooxy or alkyne linkers, which was needed for grafting onto hyaluronic acid to make hSAgA or cSAgA variants, respectively, influenced their stimulatory potency and safety, with alkyne-functionalized peptides being more potent and less anaphylactogenic than aminooxy-functionalized peptides. Immunologic anaphylaxis occurred in NOD mice in a dose-dependent manner but not in C57BL/6 or BALB/c mice; however, its incidence did not correlate with the level of anti-peptide antibodies. We provide evidence that SAgAs significantly improve the efficacy of peptides to induce tolerance and prevent autoimmune diabetes while at the same time reducing their anaphylactogenic potential.


Assuntos
Diabetes Mellitus Tipo 1 , Tolerância Imunológica , Camundongos Endogâmicos NOD , Peptídeos , Animais , Camundongos , Diabetes Mellitus Tipo 1/imunologia , Peptídeos/imunologia , Peptídeos/administração & dosagem , Feminino , Autoantígenos/imunologia , Linfócitos T Reguladores/imunologia , Imunoterapia/métodos , Anafilaxia/prevenção & controle , Anafilaxia/imunologia , Dessensibilização Imunológica/métodos , Dessensibilização Imunológica/efeitos adversos
2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260423

RESUMO

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

3.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567170

RESUMO

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Assuntos
Neoplasias do Endométrio , Metformina , Proteogenômica , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Estudos Prospectivos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Metformina/farmacologia
5.
Sci Adv ; 9(19): eade0059, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172086

RESUMO

CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.


Assuntos
Edição de Genes , Neoplasias , Animais , Camundongos , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Neoplasias/genética , Neoplasias/terapia , Reparo de DNA por Recombinação , Modelos Animais de Doenças
6.
Cancer Prev Res (Phila) ; 16(2): 65-73, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36343340

RESUMO

Antiestrogen medication is the only chemoprevention currently available for women at a high risk of developing breast cancer; however, antiestrogen therapy requires years to achieve efficacy and has adverse side effects. Therefore, it is important to develop an efficacious chemoprevention strategy that requires only a short course of treatment. PIK3CA is commonly activated in breast atypical hyperplasia, the known precancerous precursor of breast cancer. Targeting PI3K signaling in these precancerous lesions may offer a new strategy for chemoprevention. Here, we first established a mouse model that mimics the progression from precancerous lesions to breast cancer. Next, we demonstrated that a short-course prophylactic treatment with the clinically approved PI3K inhibitor alpelisib slowed early lesion expansion and prevented cancer formation in this model. Furthermore, we showed that alpelisib suppressed ex vivo expansion of patient-derived atypical hyperplasia. Together, these data indicate that the progression of precancerous breast lesions heavily depends on the PI3K signaling, and that prophylactic targeting of PI3K activity can prevent breast cancer. PREVENTION RELEVANCE: PI3K protein is abnormally high in breast precancerous lesions. This preclinical study demonstrates that the FDA-approved anti-PI3K inhibitor alpelisib can prevent breast cancer and thus warrant future clinical trials in high-risk women.


Assuntos
Lesões Pré-Cancerosas , Tiazóis , Animais , Camundongos , Feminino , Hiperplasia/tratamento farmacológico , Tiazóis/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Lesões Pré-Cancerosas/tratamento farmacológico , Moduladores de Receptor Estrogênico , Classe I de Fosfatidilinositol 3-Quinases
7.
Oncogene ; 41(48): 5214-5222, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36261627

RESUMO

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.


Assuntos
Neoplasias da Mama , Fator de Transcrição STAT5 , Animais , Feminino , Humanos , Camundongos , Mama/patologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/patologia , Fator de Transcrição STAT5/metabolismo
8.
Cancer Prev Res (Phila) ; 15(1): 3-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667127

RESUMO

Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention. PREVENTION RELEVANCE: This study demonstrates that prophylactic treatment with the BCL2-specific antagonist venetoclax prevents breast cancer initiated by a mutated and activated PIK3CA, the most common breast oncogene.


Assuntos
Neoplasias da Mama , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores de Estrogênio
9.
Cancer Res ; 81(17): 4441-4454, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099494

RESUMO

Leucine-rich repeat-containing G protein-coupled receptors 4, 5, and 6 (LGR4/5/6) play critical roles in development and cancer. The widely accepted mechanism is that these proteins, together with their R-spondin ligands, stabilize Wnt receptors, thus potentiating Wnt signaling. Here we show that LGR4 enhanced breast cancer cell metastasis even when Wnt signaling was deactivated pharmacologically or genetically. Furthermore, LGR4 mutants that cannot potentiate Wnt signaling nevertheless promoted breast cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Multiomic screening identified EGFR as a crucial mediator of LGR4 activity in cancer progression. Mechanistically, LGR4 interacted with EGFR and blocked EGFR ubiquitination and degradation, resulting in persistent EGFR activation. Together, these data uncover a Wnt-independent LGR4-EGFR signaling axis with broad implications for cancer progression and targeted therapy. SIGNIFICANCE: This work demonstrates a Wnt-independent mechanism by which LGR4 promotes cancer metastasis.See related commentary by Stevens and Williams, p. 4397.


Assuntos
Receptores ErbB/metabolismo , Metástase Neoplásica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Células HEK293 , Humanos , Técnicas In Vitro , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Proteoma/metabolismo , Análise Serial de Tecidos , Ubiquitina/metabolismo , Via de Sinalização Wnt
10.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33765436

RESUMO

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Assuntos
COVID-19/imunologia , Pulmão/imunologia , Células Mieloides/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/mortalidade , COVID-19/patologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação , Estudos Longitudinais , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Células Mieloides/patologia , SARS-CoV-2 , Linfócitos T/imunologia , Linfócitos T/patologia , Transcriptoma , Adulto Jovem
11.
Mini Rev Med Chem ; 20(9): 779-787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902358

RESUMO

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


Assuntos
Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Reparo do DNA/efeitos dos fármacos , Proteínas de Grupos de Complementação da Anemia de Fanconi/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Stem Cells ; 36(10): 1603-1616, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29938858

RESUMO

The role of lipid metabolism in epithelial stem cell (SC) function and carcinogenesis is poorly understood. The transcription factor Runx1 is known to regulate proliferation in mouse epithelial hair follicle (HF) SCs in vivo and in several mouse and human epithelial cancers. We found a novel subset of in vivo Runx1 HFSC target genes related to lipid metabolism and demonstrated changes in distinct classes of lipids driven by Runx1. Inhibition of lipid-enzymes Scd1 and Soat1 activity synergistically reduces proliferation of mouse skin epithelial cells and of human skin and oral squamous cell carcinoma cultured lines. Varying Runx1 levels induces changes in skin monounsaturated fatty acids (e.g., oleate, a product of Scd1) as shown by our lipidome analysis. Furthermore, varying Runx1 levels, the inhibition of Scd1, or the addition of Scd1-product oleate, individually affects the plasma membrane organization (or fluidity) in mouse keratinocytes. These factors also affect the strength of signal transduction through the membranes for Wnt, a pathway that promotes epithelial (cancer) cell proliferation and HFSC activation. Our working model is that HFSC factor Runx1 modulates the fatty acid production, which affects membrane organization, facilitating signal transduction for rapid proliferation of normal and cancer epithelial cells. Stem Cells 2018;36:1603-1616.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Epiteliais/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Esterol O-Aciltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células Epiteliais/citologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estearoil-CoA Dessaturase/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Esterol O-Aciltransferase/genética , Transfecção
13.
Elife ; 62017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467300

RESUMO

The transcription factor TCF7L1 is an embryonic stem cell signature gene that is upregulated in multiple aggressive cancer types, but its role in skin tumorigenesis has not yet been defined. Here we document TCF7L1 upregulation in skin squamous cell carcinoma (SCC) and demonstrate that TCF7L1 overexpression increases tumor incidence, tumor multiplicity, and malignant progression in the chemically induced mouse model of skin SCC. Additionally, we show that downregulation of TCF7L1 and its paralogue TCF7L2 reduces tumor growth in a xenograft model of human skin SCC. Using separation-of-function mutants, we show that TCF7L1 promotes tumor growth, enhances cell migration, and overrides oncogenic RAS-induced senescence independently of its interaction with ß-catenin. Through transcriptome profiling and combined gain- and loss-of-function studies, we identified LCN2 as a major downstream effector of TCF7L1 that drives tumor growth. Our findings establish a tumor-promoting role for TCF7L1 in skin and elucidate the mechanisms underlying its tumorigenic capacity.


Assuntos
Carcinogênese , Carcinoma de Células Escamosas/fisiopatologia , Lipocalina-2/metabolismo , Neoplasias Cutâneas/fisiopatologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos
14.
Elife ; 52016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929373

RESUMO

Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity.


Assuntos
Imunidade Adaptativa , Tolerância Imunológica , Selectina L/biossíntese , Linfonodos/imunologia , Linfócitos/imunologia , Células Supressoras Mieloides/fisiologia , Neoplasias/fisiopatologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Interferência de RNA , Transplante Heterólogo
15.
PLoS One ; 10(11): e0143370, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599402

RESUMO

PURPOSE: While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model. EXPERIMENTAL DESIGN: Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma. RESULTS: Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity. CONCLUSION: Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant treatment for cancer patients with high-risk of local and systemic recurrence.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Ablação por Cateter , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/cirurgia , Recidiva Local de Neoplasia/prevenção & controle , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Feminino , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
16.
Nat Commun ; 5: 4088, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909826

RESUMO

Cell migration is an integral part of re-epithelialization during skin wound healing, a complex process involving molecular controls that are still largely unknown. Here we identify a novel role for Tcf3, an essential transcription factor regulating embryonic and adult skin stem cell functions, as a key effector of epidermal wound repair. We show that Tcf3 is upregulated in skin wounds and that Tcf3 overexpression accelerates keratinocyte migration and skin wound healing. We also identify Stat3 as an upstream regulator of Tcf3. We show that the promigration effects of Tcf3 are non-cell autonomous and occur independently of its ability to interact with ß-catenin. Finally, we identify lipocalin-2 as the key secreted factor downstream of Tcf3 that promotes cell migration in vitro and wound healing in vivo. Our findings provide new insights into the molecular controls of wound-associated cell migration and identify potential therapeutic targets for the treatment of defective wound repair.


Assuntos
Proteínas de Fase Aguda/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular/genética , Queratinócitos , Lipocalinas/metabolismo , Proteínas Oncogênicas/metabolismo , Reepitelização/genética , Fator de Transcrição STAT3/metabolismo , Pele/metabolismo , Cicatrização/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/fisiologia , Lipocalina-2 , Camundongos , Camundongos Knockout , Reepitelização/fisiologia , Pele/citologia , Cicatrização/fisiologia , beta Catenina/metabolismo
17.
PLoS One ; 9(2): e89396, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586748

RESUMO

PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.


Assuntos
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Mamíferos/metabolismo , Transgenes/genética , Transposases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Códon/genética , Genoma/genética , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Camundongos , Mutagênese Insercional/métodos , Dedos de Zinco/genética
18.
Int J Hyperthermia ; 29(5): 464-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23862980

RESUMO

Cancer immunotherapy aims to generate long-lived, tumour-specific adaptive immunity to limit dysregulated tumour progression and metastasis. Tumour vasculature has emerged as a critical checkpoint controlling the efficacy of immunotherapy since it is the main access point for cytotoxic T cells to reach tumour cell targets. Therapeutic success has been particularly challenging to achieve because of the local, cytokine-rich inflammatory milieu that drives a pro-tumourigenic programme supporting the growth and survival of malignant cells. Here, we focus on recent evidence that systemic thermal therapy can switch the activities of the inflammatory cytokine, interleukin-6 (IL-6), to a predominantly anti-tumourigenic function that promotes anti-tumour immunity by mobilising T cell trafficking in the recalcitrant tumour microenvironment.


Assuntos
Hipertermia Induzida , Interleucina-6/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia Adotiva , Neoplasias/imunologia , Microambiente Tumoral/imunologia
19.
PLoS One ; 7(9): e46171, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049968

RESUMO

Green fluorescent protein (GFP) and its derivatives are the most widely used molecular reporters for live cell imagining. The development of organelle-specific fusion fluorescent proteins improves the labeling resolution to a higher level. Here we generate a R26 dual fluorescent protein reporter mouse, activated by Cre-mediated DNA recombination, labeling target cells with a chromatin-specific enhanced green fluorescence protein (EGFP) and a plasma membrane-anchored monomeric cherry fluorescent protein (mCherry). This dual labeling allows the visualization of mitotic events, cell shapes and intracellular vesicle behaviors. We expect this reporter mouse to have a wide application in developmental biology studies, transplantation experiments as well as cancer/stem cell lineage tracing.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Alelos , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Integrases/genética , Camundongos , Camundongos Transgênicos , Mitose/genética , Mitose/fisiologia
20.
J Virol ; 84(14): 6923-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20484510

RESUMO

Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vetores Genéticos , Lectinas Tipo C/metabolismo , Lentivirus , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Sindbis virus/metabolismo , Proteínas do Envelope Viral , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Moléculas de Adesão Celular/genética , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Lectinas Tipo C/genética , Lentivirus/genética , Lentivirus/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/genética , Receptores de Superfície Celular/genética , Sindbis virus/genética , Transdução Genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA