Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(7): 102718, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258553

RESUMO

Tumor multiregion sequencing reveals intratumor heterogeneity (ITH) and clonal evolution playing a key role in tumor progression and metastases. Large-scale high-depth multiregional sequencing of colorectal cancer, comparative analysis among patients with right-sided colon cancer (RCC), left-sided colon cancer (LCC), and rectal cancer (RC), as well as the study of lymph node metastasis (LN) with extranodal tumor deposits (ENTDs) from evolutionary perspective remain weakly explored. Here, we recruited 68 patients with RCC (18), LCC (20), and RC (30). We performed high-depth whole-exome sequencing of 206 tumor regions including 176 primary tumors, 19 LN, and 11 ENTD samples. Our results showed ITH with a Darwinian pattern of evolution and the evolution pattern of LCC and RC was more complex and divergent than RCC. Genetic and evolutionary evidences found that both LN and ENTD originated from different clones. Moreover, ENTD was a distinct entity from LN and evolved later.

2.
J Cell Mol Med ; 24(2): 1906-1916, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840411

RESUMO

Meckel syndrome (MKS) is a pre- or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo-occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35-years-old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715* ) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild-type CEP290 protein of 290 KD. Hence, it is a loss-of-function variant. We also found that the mutant cilium appears longer in length than the wild-type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Transtornos da Motilidade Ciliar/genética , Proteínas do Citoesqueleto/genética , Encefalocele/genética , Sequenciamento do Exoma , Mutação/genética , Doenças Renais Policísticas/genética , Retinose Pigmentar/genética , Adulto , Povo Asiático/genética , Sequência de Bases , Encefalocele/patologia , Feminino , Feto/diagnóstico por imagem , Homozigoto , Humanos , Rim/patologia , Masculino , Linhagem , Ultrassonografia Pré-Natal
3.
FASEB J ; 33(9): 10089-10103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199678

RESUMO

Sorafenib is a multikinase inhibitor that is effective in treating advanced liver cancer. Although its mechanism of action through several established cancer-related protein kinase targets is well-characterized, sorafenib induces variable responses among human tumors, and the cause for this variation is yet unknown. To investigate the underlying mechanisms, we applied mass spectrometry-based proteomic analysis to Huh7.5 human liver cancer cells and found that sorafenib significantly affected the expression of the key lipogenic enzymes, especially stearoyl coenzyme A desaturase 1 (SCD1), in these cells. Given that SCD1 catalyzes the most crucial and rate-limiting step in the synthesis of monounsaturated fatty acids (FAs), we performed a lipidomic analysis, which showed a dramatically altered lipid profile in sorafenib-treated cells. Detection and analysis of free FAs showed that the levels of monounsaturated FAs, including oleate, were significantly decreased in those cells treated by sorafenib. Addition of oleate protected liver cancer cells from sorafenib-induced death and alleviated the abnormalities of mitochondrial morphology and function caused by the drug. Treatment with sorafenib suppressed ATP production, resulting in AMPK activation via phosphorylation. Further secondary effects included reduction of the levels of sterol regulatory element-binding protein 1 (SREBP1) and the phosphorylation of mammalian target of rapamycin (mTOR) in liver cancer cells. These effects were partly abolished in the presence of compound C (an AMPK inhibitor) and ATP and adenosine, and SREBP1c overexpression also could be resistant to the effects of sorafenib, suggesting that the sorafenib-induced reduction in cell viability was mediated by the ATP-AMPK-mTOR-SREBP1 signaling pathway. Taken together, our results suggest that sorafenib's anticancer activity in liver cancer cells is based on the inhibition of ATP production, SCD1 expression, and monounsaturated FA synthesis. In addition, the decreased monounsaturated FA synthesis further triggered the more serious reduction of ATP production in sorafenib-treated cells. To our knowledge, this is the first evidence that sorafenib disrupts lipogenesis and triggers liver cancer cell death by targeting SCD1 through the ATP-AMPK-mTOR-SREBP1 pathway.-Liu, G., Kuang, S., Cao, R., Wang, J., Peng, Q., Sun, C. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR- SREBP1 signaling pathway.


Assuntos
Trifosfato de Adenosina/biossíntese , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/fisiologia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Lipidômica , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Ácido Oleico/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/metabolismo , Sorafenibe/uso terapêutico , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 9(6): 689, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880886

RESUMO

Cancer cells rewire their metabolism to satisfy the demands of uncontrolled proliferation and survival. The reprogramming of lipid metabolism supports tumor growth, metastasis, and therapy-resistance. Therefore, targeting lipid metabolic reprogramming is a potential cancer treatment strategy. We recently isolated the novel natural triterpene GL22 from Ganoderma leucocontextum, a traditional Chinese medicine. Here, we show that GL22 significantly inhibits the growth of the liver cancer cell line Huh7.5 in vitro and of Huh7.5-derived tumor xenografts in vivo. We further find that GL22 induces mitochondrial dysfunction and cell death in Huh7.5 cells, in part due to fatty acid immobilization and loss of the mitochondrial lipid cardiolipin, which has vital structural and metabolic functions. Importantly, we demonstrate that GL22 treatment decreases the expression of fatty acid-binding proteins (FABPs), which likely underlies the loss of cardiolipin, mitochondrial dysfunction, and cell death. The over-expressions of FABPs prevented the GL22-induced cell death, loss of cardiolipin, decrease of ATP production, and reduction of oxygen consumption rate in Huh7.5 cells. Our results support targeting lipid metabolism via manipulating FABPs as a cancer treatment strategy, and promote Chinese medicine as an important source of novel anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Ganoderma/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Triterpenos/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Compostos de Bifenilo/farmacologia , Cardiolipinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Gotículas Lipídicas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Modelos Biológicos , Consumo de Oxigênio/efeitos dos fármacos , Pirazóis/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação
5.
Mar Drugs ; 16(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518055

RESUMO

Tumor cells that acquire metastatic potential have developed resistance to anoikis, a cell death process, after detachment from their primary site to the second organ. In this study, we investigated the molecular mechanisms of a novel marine bacterial polysaccharide EPS11 which exerts its cytotoxic effects through affecting cancer cell adhesion and anoikis. Firstly, we found that EPS11 could significantly affect cell proliferation and block cell adhesion in A549 cells. We further demonstrated that the expression of several cell adhesion associated proteins is downregulated and the filiform structures of cancer cells are destroyed after EPS11 treatment. Interestingly, the destruction of filiform structures in A549 cells by EPS11 is in a dose-dependent manner, and the inhibitory tendency is very consistent with that observed in the cell adhesion assay, which confirms that filiform structures play important roles in modulating cell adhesion. Moreover, we showed that EPS11 induces apoptosis of A549 cells through stimulating ßIII-tubulin associated anoikis: (i) EPS11 inhibits the expression of ßIII-tubulin in both transcription and translation levels; and (ii) EPS11 treatment dramatically decreases the phosphorylation of protein kinase B (PKB or AKT), a critical downstream effector of ßIII-tubulin. Importantly, EPS11 evidently inhibits the growth of A549-derived tumor xenografts in vivo. Thus, our results suggest that EPS11 may be a potential candidate for human non-small cell lung carcinoma treatment via blocking filiform structure mediated adhesion and stimulating ßIII-tubulin associated anoikis.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Bactérias/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Polissacarídeos Bacterianos/farmacologia , Animais , Anoikis/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Bactérias/isolamento & purificação , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oceano Pacífico , Fosforilação/efeitos dos fármacos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Acta Pharmacol Sin ; 39(3): 425-437, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29119966

RESUMO

STAT1 and STAT3 are two important members of the STAT (signal transducers and activators of transcription) protein family and play opposing roles in regulating cancer cell growth. Suppressing STAT3 and/or enhancing STAT1 signaling are considered to be attractive anticancer strategies. Cucurbitacin I (CuI) isolated from the cucurbitacin family was reported to be an inhibitor of STAT3 signaling and a disruptor of actin cytoskeleton. In this study we investigated the function and mechanisms of CuI in regulating STAT signaling in human cancer cells in vitro. CuI (0.1-10 mmol/L) dose-dependently inhibited the phosphorylation of STAT3, and enhanced the phosphorylation of STAT1 in lung adenocarcinoma A549 cells possibly through disrupting actin filaments. We further demonstrated that actin filaments physically associated with JAK2 and STAT3 in A549 cells and regulated their phosphorylation through two signaling complexes, the IL-6 receptor complex and the focal adhesion complex. Actin filaments also interacted with STAT1 in A549 cells and regulated its dephosphorylation. Taken together, this study reveals the molecular mechanisms of CuI in the regulation of STAT signaling and in a possible inhibition of human cancer cell growth. More importantly, this study uncovers a novel role of actin and actin-associated signaling complexes in regulating STAT signaling.


Assuntos
Citoesqueleto de Actina/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Triterpenos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/metabolismo , Fosforilação/efeitos dos fármacos
7.
Anticancer Agents Med Chem ; 18(3): 422-427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29110628

RESUMO

BACKGROUND: 2-Methoxystypandrone (2-MS), isolated from the roots of Polygonum cuspidatum, is a potent dual inhibitor of the STAT3 and NF-κB pathways. OBJECTIVE: To investigate the molecular targets and mechanisms of 2-MS. METHOD: A biotin-conjugated 2-MS analog, named 2-MS-Biotin, was designed and synthesized. The effects of 2-MS-Biotin on the STAT3 and NF-κB pathways were examined by Western blotting. The cytotoxicity of 2- MS-Biotin was evaluated using real-time cell analysis system. Proteins directly bound to 2-MS-Biotin were pulled down through streptavidin agarose beads and were detected using Western blotting. RESULTS: 2-MS-Biotin retained the inhibition activities of the parent compound 2-MS on the STAT3 and NF-κB pathways as well as on cancer cell growth. Also, JAK2 and IKK proteins can be effectively pulled down by 2- MS-Biotin. CONCLUSION: Using 2-MS-Biotin as a tool, both JAK2 and IKK were identified as the targets of 2-MS.


Assuntos
Antineoplásicos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Naftoquinonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Janus Quinase 2/metabolismo , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Oncotarget ; 8(61): 104057-104071, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262621

RESUMO

Cancer is one of the deadliest diseases in the world and the search for novel anticancer agents is urgently required. Marine-derived isoquinolinequinones have exhibited promising anticancer activities. However, the exact mechanisms of cytotoxic activities of these isoquinolinequinones are poorly characterized. In this study, we investigated the anticancer effects and molecular mechanisms of mansouramycin C (Mm C), a cytotoxic isoquinolinequinone isolated from a marine streptomycete. We demonstrated that Mm C preferentially killed cancer cells and the cytotoxic effects were mediated by reactive oxygen species (ROS) generation. Mass spectrometry based proteomic analysis of Mm C-treated A549 cells revealed that many ROS-related proteins were differentially expressed. Proteomic-profiling after Mm C treatment identified oxidative phosphorylation as the most significant changes in pathways. Analysis also revealed extensive defects in mitochondrial structure and function. Furthermore, we disclosed that Mm C-induced ROS generation was caused by opening of mitochondrial permeability transition pore. Notably, Mm C synergized with sorafenib to induce cell death in A549 cells. Hence, we propose that the marine-derived natural compound Mm C is a potent inducer of the mitochondrial permeability transition and a promising anticancer drug candidate. Moreover, molecular mechanisms of Mm C shed new light on the understanding of the cytotoxic mechanisms of marine-derived isoquinolinequiones.

9.
Front Microbiol ; 8: 289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289406

RESUMO

Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA.

10.
Sci Rep ; 6: 26722, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216943

RESUMO

Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Polissacarídeos/farmacologia , Sargassum/química , Peixe-Zebra/metabolismo , Células A549 , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Humanos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Peixe-Zebra/genética
11.
Acta Pharmacol Sin ; 36(4): 507-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619393

RESUMO

AIM: To study the function and mechanism of bigelovin, a sesquiterpene lactone from the flower of Chinese herb Inula hupehensis, in regulating JAK2/STAT3 signaling and cancer cell growth. METHODS: HepG2 cells stably transfected with the STAT3-responsive firefly luciferase reporter plasmid (HepG2/STAT3 cells), and a panel of human cancer cell lines were used to identify active compounds. Cell viability was measured using MTT assay. Western blotting was used to detect protein expression and phosphorylation. Kinase assays were performed and the reaction between bigelovin and thiol-containing compounds was analyzed with LC-MS. RESULTS: Bigelovin (1-50 µmol/L) dose-dependently inhibited the IL-6-induced STAT3 activation in HepG2/STAT3 cells (IC50=3.37 µmol/L) and the constitutive STAT3 activation in A549 and MDA-MB-468 cells. Furthermore, bigelovin dose-dependently inhibited JAK2 phosphorylation in HeLa and MDA-MB-468 cells, as well as the enzymatic activity of JAK2 in vitro (IC50=44.24 µmol/L). Pretreatment of the cells with DTT (500 µmol/L) or GSH (500 µmol/L) eliminated the inhibitory effects of bigelovin on the IL-6-induced and the constitutive STAT3 activation. The results in LC-MS analysis suggested that bigelovin might react with cysteine residues of JAK2 leading to inactivation of JAK2. Bigelovin (5 and 20 µmol/L) had no effects on the signaling pathways of growth factors EGF, PDGF or insulin. Finally, bigelovin suppressed the cell viability and induced apoptosis in 10 different human cancer cell lines, particularly those with constitutively activated STAT3. CONCLUSION: Bigelovin potently inhibits STAT3 signaling by inactivating JAK2, and induces apoptosis of a variety of human cancer cells in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Lactonas/farmacologia , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Inula/química , Lactonas/química , Neoplasias/metabolismo , Neoplasias/patologia , Sesquiterpenos/química
12.
Cancer Sci ; 105(4): 473-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24450414

RESUMO

Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKß kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate.


Assuntos
Quinase I-kappa B/biossíntese , Janus Quinase 2/biossíntese , NF-kappa B/genética , Naftoquinonas/administração & dosagem , Fator de Transcrição STAT3/biossíntese , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Quinase I-kappa B/genética , Interleucina-6/biossíntese , Janus Quinase 2/genética , Medicina Tradicional Chinesa , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
13.
J Biol Chem ; 288(20): 14417-14427, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23580655

RESUMO

Signal transducers and activators of transcription 1 (STAT1) transduces signals from cytokines and growth factors, particularly IFN-γ, and regulates expression of genes involved in cell survival/death, proliferation, and migration. STAT1 is activated through phosphorylation on its tyrosine 701 by JAKs and is inactivated through dephosphorylation by tyrosine phosphatases. We discovered a natural compound, wedelolactone, that increased IFN-γ signaling by inhibiting STAT1 dephosphorylation and prolonging STAT1 activation through specific inhibition of T-cell protein tyrosine phosphatase (TCPTP), an important tyrosine phosphatase for STAT1 dephosphorylation. More interestingly, wedelolactone inhibited TCPTP through interaction with the C-terminal autoinhibition domain of TCPTP. We also found that wedelolactone synergized with IFN-γ to induce apoptosis of tumor cells. Our data suggest a new target for anticancer or antiproliferation drugs, a new mechanism to regulate PTPs specifically, and a new drug candidate for treating cancer or other proliferation disorders.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Interferon gama/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Genes Reporter , Células Hep G2 , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Interferência de RNA
14.
Planta Med ; 78(14): 1568-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22855270

RESUMO

Constitutively activated STAT3 plays a pivotal role in oncogenesis and metastasis in many human cancers, and STAT3 has been validated as a novel anticancer drug target. Thus, the identification of small molecules that modulate STAT3 activity could be of great therapeutic importance. The aim of this study was to isolate novel modulators of the STAT3 signaling pathway from the roots of Polygonum cuspidatum by bioassay-guided fractionation using a STAT3 reporter gene assay. 2-Methoxystypandrone (1), as well as three anthraquinones (2-4), were identified as major active components of P. cuspidatum. Compound 1 demonstrated a potent inhibitory effect on STAT3 activation and significantly inhibited cell proliferation of human breast cancer cells, especially those with constitutively activated STAT3 (IC50 = 2.7-3.1 µM). The SAR analysis of quinone analogues suggested that the phenolic and carbonyl groups are the key structures contributing to their inhibitory activities against the STAT3 signaling.


Assuntos
Antraquinonas/farmacologia , Fallopia japonica/química , Naftoquinonas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Antraquinonas/química , Antraquinonas/isolamento & purificação , Apoptose/efeitos dos fármacos , Bioensaio , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Medicina Tradicional Chinesa , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas/química
15.
Acta Pharmacol Sin ; 33(2): 261-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301862

RESUMO

AIM: To evaluate the anti-cancer effects of a new sulfonamide derivative, 2-(N-(3-chlorophenyl)-4-methoxyphenylsulfonamido)-N-hydroxypropanamide (MPSP-001). METHODS: Human cancer cell lines (HepG2, THP-1, K562, HGC-27, SKOV3, PANC-1, SW480, Kba, HeLa, A549, MDA-MB-453, and MCF-7) were examined. The cytotoxicity of MPSP-001 was evaluated using the WST-8 assay. Cell cycle distribution was examined with flow cytometry. Mitotic spindle formation was detected using immunofluorescence microscopy. Apoptosis-related proteins were examined with Western blot using specific phosphorylated protein antibodies. Competitive tubulin-binding assay was performed to test whether the compound competitively bound to the colchicine site. Molecular docking was performed to explore the possible binding conformation. RESULTS: MPSP-001 potently inhibited the growth of the 12 different types of human cancer cells with the IC(50) values ranging from 1.9 to 15.7 µmol/L. The compound exerted potent inhibition on the drug-resistant Kb/VCR and MCF-7/ADR cells, as on Kba and MCF-7 cells. In HeLa, HGC-27, A549, and other cells, the compound (5 µmol/L) caused cell cycle arrest at the G(2)/M phase, and subsequently induced cell apoptosis. In Hela cells, it prevented the mitotic spindle formation. Furthermore, the compound dose-dependently inhibited polymerization of tubulin in vitro, and directly bound to the colchicine-site of ß-tubulin. Molecular docking predicted that the compound may form two hydrogen bonds to the binding pocket. The compound showed synergistic effects with colchicine and taxol in blocking mitosis of HeLa cells. CONCLUSION: MPSP-001 shows a broad-spectrum of anti-tumor efficacy in vitro and represents a novel structure with anti-microtubule activity.


Assuntos
Antineoplásicos/farmacologia , Microtúbulos/metabolismo , Sulfonamidas/farmacologia , Moduladores de Tubulina/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sulfonamidas/química , Sais de Tetrazólio , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
16.
Inorg Chem ; 41(12): 3313-22, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12055011

RESUMO

The pseudotetrahedral complexes [Cu(NN)(DPEphos)]BF(4), where DPEphos = bis[2-(diphenylphosphino)phenyl]ether and NN = 1,10-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2), 2,9-di-n-butylphenanthroline (3), or two dimethylcyanamides (4), and NiCl(2)(DPEphos) (5) have been synthesized and structurally characterized by X-ray crystallography and their solution properties examined by use of a combination of cyclic voltammetry, NMR spectroscopy, and electronic absorption spectroscopy. Complexes 1-4 possess a reversible Cu(II)/Cu(I) couple at potentials upward of +1.2 V versus Ag/AgCl. Compounds 1-3 exhibit extraordinary photophysical properties. In room-temperature dichloromethane solution, the charge-transfer excited state of the dmp (dbp) derivative exhibits an emission quantum yield of 0.15 (0.16) and an excited-state lifetime of 14.3 mus (16.1 mus). Coordinating solvents quench the charge-transfer emission to a degree, but the photoexcited dmp complex 2 retains a lifetime of over a microsecond in acetone, methanol, and acetonitrile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA