Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
2.
J Am Chem Soc ; 145(49): 26932-26946, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988674

RESUMO

The synergy of living microbial and small-molecular therapeutics has been widely explored for treating a variety of diseases, while current combination strategies often suffer from low bioavailability, heterogeneous spatiotemporal distribution, and premature drug release. Here, the use of a triggerable prodrug nanocoating is reported to enable the on-demand activation of microbial and small-molecular therapeutics for combination treatment. As a proof-of-concept study, a reactive oxygen species-responsive aromatic thioacetal linker is employed to prepare cationic chitosan-drug conjugates, which can form a nanocoating on the surface of living bacteria via electrostatic interaction. Following administration, the wrapped bacteria can be prevented from in vivo insults by the shielding effect of the nanocoating and be co-delivered with the conjugated drug in a spatiotemporally synchronous manner. Upon reaching the lesion site, the upgraded reactive oxygen species trigger in situ cleavage of the thioacetal linker, resulting in the release of the conjugated drug and a linker-derived therapeutic cinnamaldehyde. Meanwhile, a charge reversal achieved by the generation of negatively charged thiolated chitosan induces the dissociation of the nanocoating, leading to synchronous release of the living bacteria. The adequate activation of the combined therapeutics at the lesion site exhibits superior synergistic treatment efficacy, as demonstrated by an in vivo assessment using a mouse model of colitis. This work presents an appealing approach to combine living microbial and small-molecular therapeutics for advanced therapy of diseases.


Assuntos
Quitosana , Nanopartículas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio , Sistemas de Liberação de Medicamentos , Terapia Combinada , Linhagem Celular Tumoral
3.
Respir Res ; 24(1): 291, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986064

RESUMO

BACKGROUND: Several observational studies have found that physical inactivity and sedentary time are associated with idiopathic pulmonary fibrosis (IPF) risk. However, the causality between them still requires further investigation. Therefore, our study aimed to investigate the causal effect of physical activity (PA) and sedentary time on the risk of IPF via two-sample Mendelian randomization (MR) analysis. METHODS: Multiple genome-wide association study (GWAS) data involving individuals of European ancestry were analyzed. The datasets encompassed published UK Biobank data (91,105-377,234 participants) and IPF data (2018 cases and 373,064 controls) from FinnGen Biobank. The inverse variance weighting (IVW) method was the primary approach for our analysis. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger regression, MR-PRESSO global test, and leave-one-out analysis. RESULTS: Genetically predicted self-reported PA was associated with lower IPF risk [OR = 0.27; 95% CI 0.09-0.82; P = 0.02]. No causal effects of accelerometry-based PA or sedentary time on the risk of IPF were observed. CONCLUSIONS: Our findings supported a protective relationship between self-reported PA and the risk for IPF. The results suggested that enhancing PA may be an effective preventive strategy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Comportamento Sedentário , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Exercício Físico , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/genética
4.
World J Clin Cases ; 11(16): 3813-3821, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37383120

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. However, AML is relatively rare in the population overall, accounting for only about 1 percent of all cancers. Treatment for AML can be very effective for some patients, yet it leaves others with serious and even life-threatening side effects. Chemotherapy is still the primary treatment for most AML, but over time, leukemia cells become resistant to chemotherapy drugs. In addition, stem cell transplantation, targeted therapy, and immunotherapy are currently available. At the same time, with the progression of the disease, the patient may have corresponding complications, such as coagulation dysfunction, anemia, granulocytopenia, and repeated infection, so transfusion supportive therapy will be involved in the overall treatment regime. To date, few articles have reported on blood transfusion treatment options for patients with ABO subtypes AML-M2. Blood transfusion therapy is an important supportive treatment for AML-M2, and accurate determination of patients' blood type is one of the most important steps in the treatment process. In this study, we explored blood typing and supportive treatment strategies for a patient with A2 subtype AML-M2 to provide the basis for treatment for all patients. CASE SUMMARY: In order to determine the blood type of the patient, serological and molecular biological methods were used for reference tests, and the genetic background was studied to determine the patient's final blood type and select the appropriate blood products for infusion treatment. According to the results obtained by serological and molecular biological methods, the blood type of the patient was A2 subtype; the genotype was A02/001; the irregular antibody screening was negative, and anti-A1 was found in the plasma. According to the overall treatment plan, active anti-infection, elevated cells, component blood transfusion support, and other rescue and supportive treatments were given, and the patient successfully passed the stage of myelosuppression after chemotherapy. Re-examination of bone marrow smears showed that AL was in complete remission of bone marrow signs, and minimal residual leukemia lesions suggested no cells with obvious abnormal immunophenotype (residual leukemia cells < 10-4). CONCLUSION: The infusion of patients with A2 subtype AML-M2 with A irradiated platelets and O washing red blood cells can meet the needs of clinical treatment.

5.
Huan Jing Ke Xue ; 44(5): 2661-2670, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177939

RESUMO

Excess sludge is rich in organic matter but also contains heavy metals, pathogens, and harmful substances. In this study, hydroaluminite and excess sludge were used as raw materials to reduce the risk of heavy metals leaching from sludge by coagulation and co-pyrolysis, and its phosphate adsorption characteristics were studied. The results showed that the leaching amount of Zn, Cu, Cd, and Ni in sludge biochar decreased with the increase in the hydroaluminite dosage. The sludge biochar composite (1:1HB800), prepared by co-pyrolysis of hydroaluminite and excess sludge with a mass ratio of 1:1 as well as rich in calcium and aluminum, had lowest leaching risk of heavy metals and showed the high adsorption capacity for phosphate. The process could be fitted by the Langmuir adsorption isotherm (R2=0.93), and the maximum phosphate adsorption capacity at 25℃ was 51.38 mg·g-1. The pseudo second-order kinetic model could well describe the adsorption process of 1:1HB800 for high concentration phosphate, and its adsorption rate was controlled by both surface adsorption and particle diffusion. Compared with that in the neutral solution, 1:1HB800 had better phosphate capacity in the acidic and alkaline aqueous solutions, which was related to the leaching amount of calcium/aluminum in 1:1HB800 and the existence form of aluminum under the different pH conditions. FTIR, XRD, SEM, zero potential point, and Ca2+/Al3+ leaching experiments indicated that the main adsorption mechanisms for phosphate by 1:1HB800 were co-precipitation (interaction between Ca2+/Al3+ and phosphate), ligand exchange (hydroxyl), and electrostatic interaction. Therefore, 1:1HB800 can provide a feasible alternative for the removal of phosphate in aqueous solutions and also provide a potential new method for the resource utilization and harmless treatment of excess sludge.

6.
J Biomed Opt ; 28(8): 082804, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36817549

RESUMO

Significance: Based on acoustic detection of optical absorption, photoacoustic tomography (PAT) allows functional and molecular imaging beyond the optical diffusion limit with high spatial resolution. However, multispectral functional and molecular PAT is often limited by decreased spectroscopic accuracy and reduced detection sensitivity in deep tissues, mainly due to wavelength-dependent optical attenuation and inaccurate acoustic inversion. Aim: Previous work has demonstrated that reversible color-shifting can drastically improve the detection sensitivity of PAT by suppressing nonswitching background signals. We aim to develop a new color switching-based PAT method using reversibly switchable thermochromics (ReST). Approach: We developed a family of ReST with excellent water dispersion, biostability, and temperature-controlled color changes by surface modification of commercial thermochromic microcapsules with the hydrophilic polysaccharide alginate. Results: The optical absorbance of the ReST was switched on and off repeatedly by modulating the surrounding temperature, allowing differential photoacoustic detection that effectively suppressed the nonswitching background signal and substantially improved image contrast and detection sensitivity. We demonstrate reversible thermal-switching imaging of ReST in vitro and in vivo using three PAT modes at different length scales. Conclusions: ReST-enabled PAT is a promising technology for high-sensitivity deep tissue imaging of molecular activity in temperature-related biomedical applications, such as cancer thermotherapy.


Assuntos
Técnicas Fotoacústicas , Tomografia Computadorizada por Raios X , Técnicas Fotoacústicas/métodos , Acústica , Temperatura , Difusão , Tomografia/métodos
7.
Nat Commun ; 13(1): 7808, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528693

RESUMO

Methods capable of manipulating bacterial colonization are of great significance for modulating host-microbiota relationships. Here, we describe a strategy of in-situ chemical reaction-mediated covalent localization of bacteria. Through a simple one-step imidoester reaction, primary amino groups on bacterial surface can be converted to free thiols under cytocompatible conditions. Surface thiolation is applicable to modify diverse strains and the number of introduced thiols per bacterium can be easily tuned by varying feed ratios. These chemically reactive bacteria are able to spontaneously bond with mucous layer by catalyst-free thiol-disulfide exchange between mucin-associated disulfides and newly converted thiols on bacterial surface and show thiolation level-dependent attachment. Bacteria optimized with 9.3 × 107 thiols per cell achieve 170-fold higher attachment in mucin-enriched jejunum, a challenging location for gut microbiota to colonize. As a proof-of-concept application for microbiota transplantation, covalent bonding-assisted localization of an oral probiotic in the jejunum generates an improved remission of jejunal mucositis. Our findings demonstrate that transforming bacteria with a reactive surface provides an approach to chemically control bacterial localization, which is highly desirable for developing next-generation bacterial living bioagents.


Assuntos
Dissulfetos , Probióticos , Dissulfetos/química , Compostos de Sulfidrila/química , Mucinas , Bactérias
8.
Front Nutr ; 9: 918330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958256

RESUMO

Objective: The purpose of the study was to describe the burden and temporal trend of cancer attributable to high body mass index (BMI), with major patterns highlighted by sex, Socio-demographic Index (SDI), and geographical region. Methods: This population-based observational study collected epidemiological data on cancer attributable to high BMI from the Global Burden of Diseases (GBD) 2019. The obtained data included deaths, disability-adjusted life-years (DALYs), and their age-standardized rates at the global, gender, SDI, regional, and country levels. The trend magnitudes and directions over time for mortality were analyzed. The associations between SDI and burden of cancer attributable to high BMI were also evaluated by Pearson correlation analysis. Results: Worldwide, 462.55 thousand deaths and 11.18 million DALYs of cancer were related to high BMI in 2019, and both have more than doubled since 1990. An annual 0.6% increase was observed for the age-standardized mortality rate (ASMR), and the rate of increase slowed after 2000. In general, the burden of cancer attributable to high BMI was heavier in regions with higher SDI levels, whereas the increase slowed down or even showed a decreasing trend in the recent years. In contrast, in regions with lower SDI levels, although the baseline burden of cancer attributable to high BMI was relatively low, both the numbers and rates of deaths and DALYs showed a significantly increasing trend and may not stop increasing for a period of time. The trend and magnitude of high BMI-related cancer burden varied substantially in different anatomical sites. The leading three cancers of DALYs attributable to high BMI in 2019 were esophageal, colorectal, and liver cancer. Conclusion: The high BMI-related burden of cancers is worsening, particularly in developing countries. Concerted action should be suggested to increase awareness of the harmful effects of high BMI and decrease the burden of disease attributable to high BMI, including cancer.

9.
Int J Pharm ; 606: 120923, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303822

RESUMO

A surge of platinum(IV) compounds are utilized or investigated in cancer treatment but their therapeutic outcomes have been greatly compromised by remaining adverse effects and limited antitumor performance, attributable to nonspecific distribution and insufficient activation in tumor site. Herein, we designed a series of disulfide bond introduced Pt(IV)-lipid prodrugs with different branch length, all of which are able to self-stabilize into nanomedicine and be activated by high intracellular glutathione (GSH) level. The impact of precise modification of these prodrugs on their assembly stability, pharmacokinetics and cytotoxicity was probed to establish a connection between chemical structure and antiproliferation efficiency. With optimal assembly manner and delivery efficacy, the longest axial branched Pt(IV) prodrug CSS18 exhibited the most impressive therapeutic outcome, providing a potential path to more efficient nanocarriers for chemotherapeutic agents by chemical modulation and, giving insights into the rational design of reduction responsive platinum delivery system.


Assuntos
Antineoplásicos , Pró-Fármacos , Linhagem Celular Tumoral , Nanomedicina , Platina
10.
J Control Release ; 335: 306-319, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081995

RESUMO

Chemo-immunotherapy based on immunogenic cell death (ICD) is a promising strategy for cancer therapy. However, the effective ICD requires a high dosage of ICD stimulus, which could be associated to a dose-dependent toxicity. Therefore, in this study, a liposome remote-loaded with shikonin (a potent ICD stimulus) was developed, with the ability to effectively induce ICD at high dosage in vivo. However, a hepatotoxic effect was observed. To circumvent this problem, shikonin was combined with the anthracycline mitoxantrone or doxorubicin to develop co-loaded liposomes inducing a synergistic ICD effect and cytotoxicity to tumor cells. Cytotoxicity and uptake experiment in vitro were performed to analyze the optimal synergistic ratio of shikonin and anthracyclines based on a "formulated strategy". Interestingly, copper mediated co-loaded liposomes resulted in a pH and GSH dual-responsive release property. More importantly, pharmacokinetics and tumor biodistribution studies revealed an outstanding capacity of ratiometric delivery of dual drugs. Thus, the dual-loaded liposome enhanced the antitumor effect by the stimulation of a robust immune response at lower doses of the drugs with a higher safety compared to single-loaded liposomes. Summarized, the current work provided a reference for a rational design and development of liposomal co-delivery system of drugs and ICD-induced chemo-immunotherapy, and established a potential clinical application of shikonin-based drug combinations as a new chemo-immunotherapeutic strategy for cancer treatment.


Assuntos
Morte Celular Imunogênica , Lipossomos , Antraciclinas , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Imunogenética , Imunoterapia , Naftoquinonas , Distribuição Tecidual
11.
Colloids Surf B Biointerfaces ; 203: 111766, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33866279

RESUMO

The platinum-based drugs prevail in the therapy of malignant tumors treatment. However, their clinical outcomes have been heavily restricted by severe systemic toxicities. To ensure biosafety and efficiency, herein, we constructed a disulfide bond inserted Pt(IV) self-assembled nanoplatform that is selectively activated by rich glutathione (GSH) in tumor site. Disulfide bond was introduced into the conjugates of oxaliplatin (IV) and oleic acid (OA) which conferred cascade reduction-responsiveness to nanoassemblies. Disulfide bond cleavage and reduction of Pt(IV) center occur sequentially as a cascade process. In comparison to oxaliplatin solution, Pt(IV) nanoparticles (NPs) achieved prolonged blood circulation and higher maximum tolerated doses. Furthermore, Oxa(IV)-SS-OA prodrug NPs exhibited potent anti-tumor efficiency against 4T1 cells and low toxicities in other normal tissues, which offers a promising nano-platform for potential clinical application.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Contenção de Riscos Biológicos , Dissulfetos , Humanos , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico
12.
Acta Pharm Sin B ; 11(1): 258-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532191

RESUMO

Liposomes have made remarkable achievements as drug delivery vehicles in the clinic. Liposomal products mostly benefited from remote drug loading techniques that succeeded in amphipathic and/or ionizable drugs, but seemed impracticable for nonionizable and poorly water-soluble therapeutic agents, thereby impeding extensive promising drugs to hitchhike liposomal vehicles for disease therapy. In this study, a series of weak acid drug derivatives were designed by a simplistic one step synthesis, which could be remotely loaded into liposomes by pH gradient method. Cabazitaxel (CTX) weak acid derivatives were selected to evaluate regarding its safety profiles, pharmacodynamics, and pharmacokinetics. CTX weak acid derivative liposomes were superior to Jevtana® in terms of safety profiles, including systemic toxicity, hematological toxicity, and potential central nerve toxicity. Specifically, it was demonstrated that liposomes had capacity to weaken potential toxicity of CTX on cortex and hippocampus neurons. Significant advantages of CTX weak acid derivative-loaded liposomes were achieved in prostate cancer and metastatic cancer therapy resulting from higher safety and elevated tolerated doses.

13.
Asian J Pharm Sci ; 16(6): 784-793, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35027953

RESUMO

Ferroptosis is a new mode of cell death, which can be induced by Fenton reaction-mediated lipid peroxidation. However, the insufficient H2O2 and high GSH in tumor cells restrict the efficiency of Fenton reaction-dependent ferroptosis. Herein, a self-supplying lipid peroxide nanoreactor was developed to co-delivery of doxorubicin (DOX), iron and unsaturated lipid for efficient ferroptosis. By leveraging the coordination effect between DOX and Fe3+, trisulfide bond-bridged DOX dimeric prodrug was actively loaded into the core of the unsaturated lipids-rich liposome via iron ion gradient method. First, Fe3+could react with the overexpressed GSH in tumor cells, inducing the GSH depletion and Fe2+generation. Second, the cleavage of trisulfide bond could also consume GSH, and the released DOX induces the generation of H2O2, which would react with the generated Fe2+in step one to induce efficient Fenton reaction-dependent ferroptosis. Third, the formed Fe3+/Fe2+ couple could directly catalyze peroxidation of unsaturated lipids to boost Fenton reaction-independent ferroptosis. This iron-prodrug liposome nanoreactor precisely programs multimodal ferroptosis by integrating GSH depletion, ROS generation and lipid peroxidation, providing new sights for efficient cancer therapy.

14.
Front Cell Dev Biol ; 8: 563316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102474

RESUMO

Octamer-binding transcription factor 4 (Oct4) has been recently implicated as a proangiogenic regulator in several induced pluripotent stem cells (iPSCs), however, its role in cancer stem-like cells (CSCs) remain unclear. We report here that Oct4 participates in tumor vasculogenesis in liver CSCs (LCSCs). We identify that LCSCs possess the potential of endothelial trans-differentiation under endothelial induction, present endothelial specific markers and their functions in vitro, and participate in neovasculogenesis in vivo. The knockdown of the Oct4A by short hairpin RNA (shRNA) in LCSCs represses endothelial trans-differentiation potential, but induces endothelial lineage-restricted differentiation, the latter is positively regulated by Oct4B1. Furthermore, Oct4 regulates vasculogenesis in LCSCs may be via the AKT-NF-κB-p65 signaling pathway. This work reveals Oct4, which is a crucial regulator, plays a critical role in tumor endothelial-like cells transition of LCSCs through Oct4A and Oct4B1 by different ways. The simultaneous inhibition of both the isoforms of Oct4 is hence expected to help regress neovascularization derived from CSCs. Our findings may provide insights to the possible new mechanisms of tumor vasculogenesis for primary liver cancer.

15.
Brain Res ; 1748: 147082, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866544

RESUMO

Neovascularization is a histological feature of glioma, especially of glioblastoma (GBM), being associated with tumor invasiveness and poor prognosis. However, current anti-angiogenic therapies targeting vascular endothelial cells (ECs), has exhibited poor efficacy in some GBM cases. This may be at least partially attributed to the potential of glioblastoma cells to construct blood supply chain via vasculogenic mimicry or endothelial differentiation. This study aims to explore differences in vasculogenic activity and sensitivity to angiogenic stimulants between normal human ECs and glioma cells of different grades. We found that grade IV U87 GBM cells showed highly inducible vasculogenic activity either in the orthotopic xenograft model or under in vitro angiogenic stimulants as compared with grade II CHG5 glioma cells. The hypoxia mimetic more strongly induced in vitro vasculogenic capacity and endothelial marker expression of U87 GBM cells than the stimulation with multiple proangiogenic growth factors (vascular endothelial growth factor, basic fibroblast growth factor and epidermal growth factor). In contrast, proangiogenic effect of hypoxia on human umbilical vein endothelial cells (HUVECs) was weaker than on U87 GBM cells. In addition, it was also observed that the in vitro vasculogenic process of U87 cells started later but lasted longer than that of HUVECs. These results demonstrate that when compared with normal ECs, high-grade glioma cells basically possess weaker vasculogenic activity, but exhibit higher sensitivity and longer-lasting response to angiogenic stimulants, especially to hypoxia. This may be helpful to develop novel anti-angiogenic strategies targeting both vascular ECs and vasculogenic glioma cells.


Assuntos
Indutores da Angiogênese/farmacologia , Neoplasias Encefálicas/patologia , Encéfalo/efeitos dos fármacos , Glioma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos
16.
Clin Respir J ; 14(7): 667-674, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32162441

RESUMO

BACKGROUND: To examine the effects of Keratin 6A (KRT6A) protein on the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and to analyse the relationship between the expression level of KRT6A protein and the survival prognosis of lung adenocarcinoma patients. METHODS: Western Blot was used to detect the expression of KRT6A protein in lung adenocarcinoma cell lines. CCK-8 experiment and colony formation assays were performed to detect the proliferation ability. Wound healing assay and transwell migration assay were conducted to detect the migration ability. Transwell invasion assay was conducted to detect the invasion ability. Immunohistochemistry was used to detect the expression of KRT6A protein in lung adenocarcinoma tissues. RESULTS: We first found that the expression of KRT6A protein in lung adenocarcinoma cell lines was low. After overexpressed KRT6A protein in lung adenocarcinoma cells, we then found that KRT6A protein could not only inhibit the proliferation ability of lung adenocarcinoma cells but also inhibit them migration and invasion abilities. In addition, we also found that there had obvious difference in the expression of KRT6A protein in between patients. And through further analysis, we finally discovered that high expression of KRT6A protein was related to favourable prognosis in lung adenocarcinoma patients. CONCLUSIONS: KRT6A protein inhibits the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and high expression of KRT6A protein is a predictor of good prognosis in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/genética , Queratina-6/genética , Queratina-6/farmacologia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica/métodos , Queratina-6/metabolismo , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Sincalida/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30412790

RESUMO

BACKGROUND: The renin angiotensin-aldosterone system (RAAS) and lipoxins (LXs) have similar roles in many processes. We previously reported that BML-111, a Lipoxin receptor agonist, inhibited chronic injury hepatic fibrosis by regulating RAAS, but whether LXs are involved in BML-111-mediated protection from acute injury is unclear still. METHODS: We established models of acute liver/lung injury and confirmed them with histopathology and myeloperoxidase (MPO) measurements. BML-111, a lipoxin receptor agonist, was applied to mimic the effects of LXs. The contents and activities of angiotensin converting enzyme(ACE) and angiotensinconverting enzyme 2 (ACE2) were measured through ELISA and activity assay kits respectively. Angiotensin II (AngII), angiotensin-(1-7) (Ang-1-7), AngII type 1 receptor (AT1R), and Mas receptor were quantified with ELISA and Western blot. RESULTS: Models of acute injury were established successfully and BML-111 protected LPS-induced acute lung injury and LPS/D-GalN-induced acute liver injury. BML-111 repressed the activity of ACE, but increased the activity of ACE2. BML-111 decreased the expression levels of ACE, AngII, and AT1R, meanwhile increased the levels of ACE2, Ang-(1-7), and Mas. Furthermore, BOC-2, an inhibitor of lipoxin receptor, reversed all the effects. CONCLUSION: BML-111 could protect against acute injury via regulation RAAS.


Assuntos
Ácidos Heptanoicos/farmacologia , Receptores de Lipoxinas/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animais , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Asian J Pharm Sci ; 14(5): 569-580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32104484

RESUMO

Mitochondria are currently known as novel targets for treating cancer, especially for tumors displaying multidrug resistance (MDR). This present study aimed to develop a mitochondria-targeted delivery system by using triphenylphosphonium cation (TPP+)-conjugated Brij 98 as the functional stabilizer to modify paclitaxel (PTX) nanocrystals (NCs) against drug-resistant cancer cells. Evaluations were performed on 2D monolayer and 3D multicellular spheroids (MCs) of MCF-7 cells and MCF-7/ADR cells. In comparison with free PTX and the non-targeted PTX NCs, the targeted PTX NCs showed the strongest cytotoxicity against both 2D MCF-7 and MCF-7/ADR cells, which was correlated with decreased mitochondrial membrane potential. The targeted PTX NCs exhibited deeper penetration on MCF-7 MCs and more significant growth inhibition on both MCF-7 and MCF-7/ADR MCs. The proposed strategy indicated that the TPP+-modified NCs represent a potentially viable approach for targeted chemotherapeutic molecules to mitochondria. This strategy might provide promising therapeutic outcomes to overcome MDR.

19.
Transl Cancer Res ; 8(3): 736-751, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35116812

RESUMO

BACKGROUND: Lung cancer is the main reason for death associated with cancer all over the world. In most cases of non-small cell lung cancer (NSCLC), patients only express one type of gene mutation, each gene mutation population has different clinicopathological features, and each is expressed differently in different regions of the population. At present, there are few studies on multiple driver genes and clinicopathological features of the population in Hunan, China. METHODS: From February 2016 to December 2017, the Department of Geriatric Respiratory Medicine of Xiangya Hospital of Central South University diagnosed 113 cases of NSCLC. Genetic testing of next-generation sequencing (NGS) was completed, and it conformed to the inclusion criteria. All cases were pathologically confirmed as NSCLC, with the tumor staging being based on the 8th edition of TNM classification. RESULTS: In this study, we included a total of 113 NSCLC cases, including 78 males and 35 females. Histological distributions were mainly adenocarcinoma (ADC, 78.76%) and squamous cell carcinoma (SCC, 21.24%). We found 71 cases had gene-mutations. There was one concurrent mutation of ALK and ROS1, one concurrent mutation of epidermal growth factor receptor (EGFR) and BRAF, one concurrent mutation of EGFR and MET, one concurrent mutation of MET and BRAF, and one concurrent mutation of EGFR and KRAS; there were two cases of concurrent mutation of EGFR and ERBB2. The distribution of each of the mutated genes was as follows: EGFR, 62.82%; ALK, 8.97%; ROS1, 5.13%; MET, 5.13%; ERBB2, 5.13%; RET, 0.00%; BRAF, 2.56%; KRAS, 10.26%. Our study found that in patients with EGFR mutation, the mutation rate of males was 32.05%, and the rate in females was 68.57% (P<0.01); the mutation rate in people aged 60 or above was 40.00% while for those aged lower than 60 it was 46.55% (P>0.05); the mutation rate of ADC was 52.81% and in SCC was 8.33% (P<0.01); the mutation rate in smokers was 32.84% and in non-smokers was 58.70% (P<0.05); the mutation rate in patients of IV stage was 47.37% and the rate in patients of non-IV stage was 22.22% (P>0.05). Our study found that among patients with ALK/ROS1/MET/ERBB2/BRAF/KRAS mutations, the mutation rate in men was 7.69%, 2.60%, 3.85%, 2.56%, 0.00%, and 8.97% respectively, and for females it was 2.86%, 5.71%, 2.86%, 5.71%, 5.71%, and 2.86% respectively; the mutation rate in patients aged 60 and older was 3.64%, 5.45%, 3.64%, 1.82%, 1.82%, and 9.09% respectively; the rate in patients aged lower 60 was 8.62%, 1.72%, 3.45%, 5.17%, 1.72%, and 5.17% respectively; the mutation rate of ADC was 6.74%, 3.37%, 3.37%, 4.49%, 2.25%, and 6.74% respectively, while for SCC, it was 4.17%, 4.17%, 4.17%, 0.00%, 0.00%, and 8.33% respectively; the mutation rate in smokers was 8.96%, 1.49%, 4.48%, 1.49%, 0.00%, and 10.45% respectively, while in non-smokers, it was 2.17%, 6.52%, 2.17%, 6.52%, 4.35%, and 2.17% respectively; the mutation rate in patients of IV stage was 7.37%, 4.21%, 2.11%, 4.21%, 2.11%, and 7.37% respectively, and in patients of non-IV stage, it was 0.00%, 0.00%, 11.11%, 0.00%, 0.00%, and 5.56% respectively. In ALK/ROS1/MET/ERBB2/BRAF/KRAS mutations, there was no statistically significant difference in gender, age, tissue type, smoking history, and stage. Our research shows that the distribution of each mutant type of EGFR mutation was as follows: exon 2, 1/74 (1.35%); exon 4, 1/74 (1.35%); exon 6, 1/74 (1.35%); exon 18, 1/74 (1.35%); exon 19, 25/74 (33.78%); exon 20, 12/74 (16.22%); exon 21, 19/74 (25.68%); exon 22, 1/74 (1.35%); and EGFR amplification, 13/74 (17.57%). CONCLUSIONS: (I) EGFR mutation was more common in non-smoking female patients with ADC and had no significant correlation with age and stage. (II) EGFR mutations were mainly concentrated in exon 19, 20, 21, and EGFR amplification. There was no significant statistical difference between mutations in exons 19, 20, 21, EGFR gene amplification and clinical features. (III) There was no statistically significant difference in the ALK/ROS1/MET/ERBB2/BRAF/KRAS mutations with gender, age, tissue type, smoking history, and tumor stage.

20.
Innate Immun ; 24(5): 285-296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969931

RESUMO

Previous studies have reported that lipoxin A4 (LXA4) and the angiotensin I-converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)], and its receptor Mas [ACE2-Ang-(1-7)-Mas] axis play important protective roles in acute lung injury (ALI). However, there is still no direct evidence of LXA4-mediated protection via the ACE2-Ang-(1-7)-Mas axis during ALI. This work was performed using an LPS-induced ALI mouse model and the data indicated the following. First, the animal model was established successfully and LXA4 ameliorated LPS-induced ALI. Second, LXA4 could increase the concentration and activity of ACE2 and the levels of Ang-(1-7) and Mas markedly. Third, LXA4 decreased the levels of TNF-α, IL-1ß, and reactive oxygen species while increasing IL-10 levels. Fourth, LXA4 inhibited the activation of the NF-κB signal pathway and repressed the degradation of inhibitor of NF-κB, the phosphorylation of NF-κB, and the translocation of NF-κB. Finally, and more importantly, BOC-2 (LXA4 receptor inhibitor), MLN-4760 (ACE2 inhibitor), and A779 (Mas receptor antagonist) were found to reverse all of the effects of LXA4. Our data provide evidence that LXA4 protects the lung from ALI through regulation of the ACE2-Ang-(1-7)-Mas axis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Imidazóis/metabolismo , Leucina/análogos & derivados , Lipoxinas/metabolismo , Peptidil Dipeptidase A/metabolismo , Angiotensina I/metabolismo , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imidazóis/antagonistas & inibidores , Leucina/antagonistas & inibidores , Leucina/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA