Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4471, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927235

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.


Assuntos
Proteínas de Bactérias , Ácido N-Acetilneuramínico , Trifosfato de Adenosina/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido N-Acetilneuramínico/metabolismo
2.
Nat Commun ; 8: 14162, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102196

RESUMO

While transplantation represents a key tool for assessing in vivo functionality of neural stem cells and their suitability for neural repair, little is known about the integration of grafted neurons into the host brain circuitry. Rabies virus-based retrograde tracing has developed into a powerful approach for visualizing synaptically connected neurons. Here, we combine this technique with light sheet fluorescence microscopy (LSFM) to visualize transplanted cells and connected host neurons in whole-mouse brain preparations. Combined with co-registration of high-precision three-dimensional magnetic resonance imaging (3D MRI) reference data sets, this approach enables precise anatomical allocation of the host input neurons. Our data show that the same neural donor cell population grafted into different brain regions receives highly orthotopic input. These findings indicate that transplant connectivity is largely dictated by the circuitry of the target region and depict rabies-based transsynaptic tracing and LSFM as efficient tools for comprehensive assessment of host-donor cell innervation.


Assuntos
Mapeamento Encefálico , Células-Tronco Neurais/fisiologia , Neurônios/transplante , Animais , Encéfalo , Diferenciação Celular/fisiologia , Vetores Genéticos , Humanos , Interneurônios , Imageamento por Ressonância Magnética/métodos , Camundongos , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Vírus da Raiva/fisiologia
3.
Langmuir ; 33(4): 1051-1059, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28059515

RESUMO

Direct delivery of proteins and peptides into living mammalian cells has been accomplished using phospholipid liposomes as carrier particles. Such liposomes are usually taken up via endocytosis where the main part of their cargo is degraded in lysosomes before reaching its destination. Here, fusogenic liposomes, a newly developed molecular carrier system, were used for protein delivery. When such liposomes were loaded with water-soluble proteins and brought into contact with mammalian cells, the liposomal membrane efficiently fused with the cellular plasma membrane delivering the liposomal content to the cytoplasm without degradation. To explore the key factors of proteofection processes, the complex formation of fusogenic liposomes and proteins of interest and the size and zeta potential of the formed fusogenic proteoliposoms were monitored. Intracellular protein delivery was analyzed using fluorescence microscopy and flow cytometry. Proteins such as EGFP, Dendra2, and R-phycoerythrin or peptides such as LifeAct-FITC and NTF2-AlexaFluor488 were successfully incorporated into mammalian cells with high efficiency. Moreover, correct functionality and faithful transport to binding sites were also proven for the imported proteins.


Assuntos
Citoplasma/metabolismo , Lipossomos/química , Proteínas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Peptídeos/química , Peptídeos/metabolismo , Transporte Proteico , Proteínas/química
4.
Molecules ; 20(4): 6941-58, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25913932

RESUMO

NKCS is an improved mutant of the bioactive peptide NK-2, which shows strong activity against Escherichia coli and low toxicity towards human cells. The different activity demonstrates the relevance of the physico-chemical nature of the target membrane for the biological effect of this peptide. We studied the effect of this potent antimicrobial peptide on model membranes by activity studies, differential scanning calorimetry, single molecule tracking and tracer efflux experiments. We found that NKCS severely distorted, penetrated and perforated model lipid membranes that resembled bacterial membranes, but not those that were similar to human cell membranes. The interactions of NKCS with phosphatidylethanolamine, which is abundant in bacterial membranes, were especially strong and are probably responsible for its antimicrobial activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lipídeos de Membrana/química , Peptídeos Catiônicos Antimicrobianos/química , Varredura Diferencial de Calorimetria , Membrana Celular/química , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Humanos , Membranas Artificiais , Peptídeos/química , Fosfatidilcolinas , Fosfatidiletanolaminas , Fosfatidilgliceróis
5.
Nucleus ; 4(1): 8-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23324459

RESUMO

Numerous molecular details of intracellular mRNA processing have been revealed in recent years. However, the export process of single native mRNA molecules, the actual translocation through the nuclear pore complex (NPC), could not yet be examined in vivo. The problem is observing mRNA molecules without interfering with their native behavior. We used a protein-based labeling approach to visualize single native mRNPs in live salivary gland cells of Chironomus tentans, an iconic system used for decades to study the mRNA life cycle. Recombinant hrp36, the C. tentans homolog of mammalian hnRNP A1, was fluorescence labeled and microinjected into living cells, where it was integrated into nascent mRNPs. Intranuclear trajectories of single mRNPs, including their NPC passage, were observed with high space and time resolution employing a custom-built light sheet fluorescence microscope. We analyzed the kinetics and dynamics of mRNP export and started to study its mechanism and regulation by measuring the turnover-kinetics of single Dbp5 at the NPC.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Poro Nuclear/metabolismo , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Chironomidae/metabolismo , Cinética , Microscopia de Fluorescência , Ribonucleoproteínas/metabolismo , Glândulas Salivares/citologia
6.
J Biomed Opt ; 16(2): 026013, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361697

RESUMO

G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of ß(2)-adrenergic receptors (ß(2)AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all ß(2)ARs are constitutively immobile. About 2/3 of the ß(2)ARs moved with a diffusion constant of D(2) = 0.03 ± 0.001 µm(2)/s and about 17% were diffusing five-fold faster (D(3) = 0.15 ± 0.02 µm(2)/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ(1) = 77 ± 1 ms and τ(2) = 388 ± 11 ms. Agonistic stimulation of the ß(2)AR-Alexa-NA complexes with 1 µM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in ß(2)AR mobility suggesting that different receptor dynamics characterize different receptor states.


Assuntos
Membrana Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Receptores Adrenérgicos beta 2/metabolismo , Terbutalina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos
7.
Biochim Biophys Acta ; 1803(2): 261-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20056122

RESUMO

Hyaluronan and its receptor CD44 are known to contribute to the invasive growth of different tumors of the central nervous system. It is not known, however, if CD44 is sufficient to activate invasive growth into the brain tissue. This study examines how CD44 regulates the motility and invasive growth of B35 neuroblastoma cells into a hyaluronan-rich environment. A comprehensive experimental approach was used encompassing biochemical techniques, single molecule microscopy, correlative confocal and scanning electron microscopy, morphometry of cellular extensions, live-cell imaging and tracking, transplantation onto organotypic brain slices, two-photon imaging and invasion assays. We found that CD44-GFP fusion protein was localized in filopodia and in focal bleb-like protrusions where it provided binding sites for hyaluronan. Transient expression of CD44-GFP was sufficient to increase the length of filopodia, to enhance cell migration and to promote invasive growth into hyaluronan-rich brain tissue. Thus, CD44 controls molecular devices localized in filopodia and bleb-like specializations of the cell surface that enhance cell migration and invasive growth.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo , Linhagem Celular Tumoral/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Neuroblastoma/patologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Corantes Fluorescentes/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Invasividade Neoplásica , Neuroblastoma/metabolismo , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/metabolismo
8.
Biochemistry ; 48(22): 4728-37, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19400584

RESUMO

Cell-penetrating peptides like the cationic HIV1 TAT peptide are able to translocate across cell membranes and to carry molecular cargoes into the cellular interior. For most of these peptides, the biophysical mechanism of the membrane translocation is still quite unknown. We analyzed HIV1 TAT peptide binding and mobility within biological model membranes. To this end, we generated neutral and anionic giant unilamellar vesicles (GUVs) containing DPPC, DOPC, and cholesterol and containing DPPC, DOPC, cholesterol, and DPPS (DOPS), respectively. First, we characterized the mobility of fluorescently labeled lipids (TR-DHPE) within liquid-ordered and liquid-disordered lipid phases by single-molecule tracking, yielding a D(LO) of 0.6 +/- 0.05 microm(2)/s and a D(LD) of 2.5 +/- 0.05 microm(2)/s, respectively, as a reference. Fluorescently labeled TAT peptides accumulated on neutral GUVs but bound very efficiently to anionic GUVs. Single-molecule tracking revealed that HIV1 TAT peptides move on neutral and anionic GUV surfaces with a D(N,TAT) of 5.3 +/- 0.2 microm(2)/s and a D(A,TAT) of 3.3 +/- 0.2 mum(2)/s, respectively. TAT peptide diffusion was faster than fluorescent lipid diffusion, and also independent of the phase state of the membrane. We concluded that TAT peptides are not incorporated into but rather floating on lipid bilayers, but they immerged deeper into the headgroup domain of anionic lipids. The diffusion constants were not dependent on the TAT concentration ranging from 150 pM to 2 microM, indicating that the peptides were not aggregated on the membrane and not forming any "carpet".


Assuntos
Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Ânions/metabolismo , Cátions/metabolismo , Corantes Fluorescentes/metabolismo , Produtos do Gene tat/fisiologia , HIV-1/química , HIV-1/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Peptídeos/fisiologia , Permeabilidade , Fosfatidiletanolaminas/metabolismo , Transporte Proteico/fisiologia , Eletricidade Estática , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA